
Analyzing and dynamically indexing the query set

Juan Manuel Barrios a,b,n,1, Benjamin Bustos b,2, Tomáš Skopal c,3

a ORAND S.A., Chile
b PRISMA, Department of Computer Science, University of Chile, Chile
c SIRET Research Group, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

a r t i c l e i n f o

Available online 13 June 2013

Keywords:
Similarity search
Metric indexing
Multimedia information retrieval
Content-based multimedia retrieval

a b s t r a c t

Most of the current metric indexes focus on indexing the collection of reference. In this
work we study the problem of indexing the query set by exploiting some property that
query objects may have. Thereafter, we present the Snake Table, which is an index
structure designed for supporting streams of k-NN searches within a content-based
similarity search framework. The index is created and updated in the online phase while
resolving the queries, thus it does not need a preprocessing step. This index is intended to
be used when the stream of query objects fits a snake distribution, that is, when the
distance between two consecutive query objects is small. In particular, this kind of
distribution is present in content-based video retrieval systems, image classification based
on local descriptors, rotation-invariant shape matching, and others. We show that the
Snake Table improves the efficiency of k-NN searches in these systems, avoiding the
building of a static index in the offline phase.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the metric approach for similarity search, the most
common search methods require an example object as
query. As result, the search system returns the similar
objects to the query. For example, in a k-NN query, the
search returns the k closest objects to the query in the data
collection. For improving the efficiency of the search, the
standard approach is to preprocess the data collection
for building a metric access method. While the preproces-
sing cost for building the index may be high, this cost
is amortized during the processing of the queries.

Normally, each query is processed in an isolated way with
respect to previous or future queries. However in some
cases, it is possible to improve the efficiency by taking
advantage of inherent properties of the stream of queries.

Among the possible properties of a stream of queries,
an interesting one is when consecutive queries are similar
to each other. This property naturally arises in applications
like similarity search for videos [1], where consecutive
frames of a video may be used as query object. If the query
frames are taken from the same shot, it follows that
consecutive queries are similar to each other. Another
application is time series for shape retrieval [2], where
consecutive queries correspond to the same time series
but shifted according to the temporal dimension. This
results in consecutive queries that are also similar. There-
fore, researching techniques that exploit the similarity
between query objects to increase the efficiency becomes
relevant, as it may have a large impact in the aforemen-
tioned applications.

In this paper, we study the approach of preprocessing
the query set and indexing it dynamically. Specifically,
we present the Snake Table, which is a dynamic indexing

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.is.2013.05.010

n Corresponding author at: ORAND S.A. Tel.: +56 222474691.
E-mail addresses: juan.barrios@orand.cl, jbarrios@dcc.uchile.cl

(J.M. Barrios), bebustos@dcc.uchile.cl (B. Bustos),
skopal@ksi.mff.cuni.cz (T. Skopal).

1 This research has been supported by CONICYT Project
PAI-78120426.

2 This research has been supported by FONDEF Project D09I1185.
3 This research has been supported in part by Czech Science

Foundation project GA CR 202/11/0968.

Information Systems 45 (2014) 37–47

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2013.05.010
dx.doi.org/10.1016/j.is.2013.05.010
dx.doi.org/10.1016/j.is.2013.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.010&domain=pdf
dx.doi.org/10.1016/j.is.2013.05.010


structure designed for supporting streams of k-NN
searches. Unlike most of the metric access methods, the
Snake Table is short-lived and query-object oriented.
The index is intended to be used when the stream of
query objects fits a “snake distribution”, which we define
formally in this work. We show that the snake distribution
for query objects arises naturally in some problems (like in
the example for video similarity search) and also in other
problems can be “artificially” forced by reordering the
query set. We show experimentally that processing
a stream of queries with snake distribution using the
Snake Table can outperform a static metric access method.

An existing indexing structure with similar objectives
and properties is called the D-file [3]. In this work, we
show that the D-file suffers from high internal realtime
complexity making it unviable to use it in metric spaces
with computationally inexpensive (i.e., fast) distance func-
tions (like Manhattan distance or Euclidean distance).
We compare the Snake Table with D-file and LAESA index,
showing that Snake Table achieves the best performance
when the data follows a snake distribution.

The structure of the paper is as follows. Section 2 gives
a background of metric spaces and efficiency issues.
Section 3 analyses the properties of a query set and
presents a taxonomy for query sets. Section 4 reviews
the related work, focusing on the techniques that prepro-
cess and index the query set. Section 5 defines a snake
distribution and presents the Snake Table. Section 6
evaluates the performance achieved by indexing the
query sets using different scenarios. Finally, Section 7
summarizes the contributions of this work.

2. Background

Let M¼ ðD; dÞ be a metric space [4]. Given a collection
RDD, and a query object q∈D, a range search returns all
the objects in R that are closer than a distance threshold
ϵ to q, and a nearest neighbor search (k-NN) returns the k
closest objects to q in R.

For improving efficiency in metric spaces, Metric Access
Methods (MAMs) [5] are index structures designed to
efficiently perform similarity search queries. MAMs avoid
a linear scan over the whole database by using the metric
properties to save distance evaluations. Given the metric
space M, the object-pivot distance constraint [4] guaran-
tees that ∀a; b; p∈D:

jdða; pÞ−dðp; bÞj≤dða; bÞ≤dða; pÞ þ dðp; bÞ ð1Þ
One index structure that uses pivots for indexing is the

Approximating and Eliminating Search Algorithm (AESA) [6].
It first computes a matrix of distances between every pair of
objects x; y∈R. The structure is simply an jRj � jRj distance
matrix. In fact, only a half of the matrix needs to be stored,
due to symmetry of d. The main drawback of the AESA
approach is the quadratic space of the matrix. Linear AESA
(LAESA) [7] gets around this problem by selecting a set of
pivots PDR. The distance between each pivot to every
object is calculated and stored in a jRj � jPj distance matrix,
also known as the pivot table. LAESA reduces the required
space compared to AESA, however an algorithm for selecting
a good set of pivots is required [8].

Given a query object q (not necessarily in R), the
similarity search algorithm first evaluates the distance
dðq; pÞ for each pivot p∈P, then scans R, and for each
r∈R it evaluates the lower bound function LBP:

LBP ðq; rÞ ¼max
p∈P

fjdðq; pÞ−dðr;pÞjg ð2Þ

Note that LBP can be evaluated efficiently because
dðq; pÞ is already calculated and dðr; pÞ resides in the pivot
table. In the case of range searches, if LBP ðq; rÞ4ϵ then r
can be safely discarded because r cannot be part of the
search result. In the case of k-NN searches, if LBP ðq; rÞ≥
dðq; okÞ then r can be safely discarded, where ok is the
current kth nearest neighbor candidate to q. If r is not
discarded, the actual distance dðq; rÞ must be evaluated to
decide whether or not r is part of the search result.

The efficiency of some MAM in M is related to: (1) the
number of distance evaluations that are discarded when it
performs a similarity search; and (2) the internal cost for
deciding whether some distance can be discarded or not.
A similarity search using any MAM will be faster than a
linear scan when the time saved due to the discarded
distances is greater than the time spent due to the internal
cost. For example, in the case of LAESA, the internal cost
for a similarity search comprises the evaluation of dðq; pÞ
for each pivot p in P, and the evaluation of LBP ðq; rÞ for
each object r in R, thus it increases linearly with jPj.
The amount of distances discarded by LAESA depends on
the metric space itself and on the size and quality of P.

In order to analyze the efficiency that any MAM can
achieve in a collection R, Chávez et al. [5] propose to
analyze the histogram of distances of d. A histogram of
distances is constructed by evaluating dða; bÞ for a random
sample of objects a; b∈R. The histogram of distances reveals
information about the distribution of objects in M. Given a
histogram of distances for M, the intrinsic dimensionality ρ
is defined as ρðMÞ ¼ μ2=2s2, where μ and s2 are the mean
and the variance of histogram of distances for M. The
intrinsic dimensionality estimates the efficiency that any
MAM can achieve in M, therefore it tries to quantify
the difficulty in indexing a metric space. A histogram of
distances with small variance (i.e., a high value of ρ) means
that the distance between any two objects dða; bÞ with high
probability will be near μ, thus the difference between any
two distances with high probability will be a small value. In
that case, for most of the pivots the lower bound from Eq.
(1) will become ineffective at discarding objects. Increasing
the number of pivots will improve the value of the lower
bounds, however the internal cost of the MAM will also
increase.

3. Streams of k-NN searches

MAMs can be classified as static or dynamic depending
on how they manage the insertion or deletion of objects in
R during the online phase. A dynamic MAM can update its
structures to add or remove any object, hence it can
remain online even for growing collections. Usually, the
tree-based MAMs are dynamic, like the M-Tree [9]. A static
MAM cannot manage large updates in its structures,
thus after many modifications of R the whole indexing

J.M. Barrios et al. / Information Systems 45 (2014) 37–4738



Download English Version:

https://daneshyari.com/en/article/396865

Download Persian Version:

https://daneshyari.com/article/396865

Daneshyari.com

https://daneshyari.com/en/article/396865
https://daneshyari.com/article/396865
https://daneshyari.com

