
Hybrid query execution engine for large attributed graphs

Sherif Sakr a,n, Sameh Elnikety b, Yuxiong He b

a National ICT Australia, UNSW, Sydney, Australia
b Microsoft Research, Redmond, WA, United States

a r t i c l e i n f o

Article history:
Received 19 December 2012
Received in revised form
26 October 2013
Accepted 29 October 2013
Recommended by: K.A. Ross
Available online 12 November 2013

Keywords:
Data models
Query
Access methods
Graphs
Graph queries
SPARQL

a b s t r a c t

Graphs are widely used for modeling complicated data such as social networks, biblio-
graphical networks and knowledge bases. The growing sizes of graph databases motivate
the crucial need for developing powerful and scalable graph-based query engines.
We propose a SPARQL-like language, G-SPARQL, for querying attributed graphs. The
language enables the expression of different types of graph queries that are of large
interest in the databases that are modeled as large graph such as pattern match-
ing, reachability and shortest path queries. Each query can combine both structural
predicates and value-based predicates (on the attributes of the graph nodes/edges).
We describe an algebraic compilation mechanism for our proposed query language
which is extended from the relational algebra and based on the basic construct of
building SPARQL queries, the Triple Pattern. We describe an efficient hybrid Memory/
Disk representation of large attributed graphs where only the topology of the graph is
maintained in memory while the data of the graph are stored in a relational database. The
execution engine of our proposed query language splits parts of the query plan to be
pushed inside the relational database (using SQL) while the execution of other parts of the
query plan is processed using memory-based algorithms, as necessary. Experimental
results on real and synthetic datasets demonstrate the efficiency and the scalability of our
approach and show that our approach outperforms native graph databases by several
factors.

& 2013 Published by Elsevier Ltd.

1. Introduction

Graphs are popular data structures which are used to
model structural relationship between objects. Recently,
graph query processing has attracted a lot of atten-
tion from the database research community due to the
increasing popularity of graph databases in various appli-
cation domains. In general, existing research on graph
databases and graph query processing can be classified
into two main categories. The first category represents
graph databases which consist of a large number of
small graphs (usually called Transactional Graph Database)

such as bioinformatic applications [28], cheminformatics
applications [31] and repositories of business process
models [46]. In this category, there are two types of
queries that are commonly studied in the literature:

(a) Subgraph query which aims to find all the graphs in the
database such that a given query graph is a subgraph
of them [58,59].

(b) Supergraph query that aims to find all the graphs in the
database which are subgraphs of the given query
graph [11,60].

The second category of graph databases is usually repre-
sented as one (or a very small number) of the large graphs
such as social networks [8], bibliographical networks [56]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.is.2013.10.007

n Corresponding author.
E-mail addresses: ssakr@cse.unsw.edu.eu (S. Sakr),

samehe@microsoft.com (S. Elnikety), yuxhe@microsoft.com (Y. He).

Information Systems 41 (2014) 45–73

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.10.007
http://dx.doi.org/10.1016/j.is.2013.10.007
http://dx.doi.org/10.1016/j.is.2013.10.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.10.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.10.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.10.007&domain=pdf
mailto:ssakr@cse.unsw.edu.eu
mailto:samehe@microsoft.com
mailto:yuxhe@microsoft.com
http://dx.doi.org/10.1016/j.is.2013.10.007


and knowledge bases [53]. In this category, there are three
common types of queries:

(a) Pattern match query that tries to find the existence(s)
of a pattern graph (e.g. path, star, subgraph) in the
large graph [62,63].

(b) Reachability query that verifies if there exists a path
between any two vertices in the large graph [13,30].

(c) Shortest path query which represents a variant version
of the reachability query as it returns the shortest path
distance (in terms of number of edges) between any
two vertices in the large graph (if the two vertices are
connected) [12,57].

In this paper, we focus on query processing in the second
category of graph databases. In many real applications of
this category, both the graph topological structures in
addition to the properties of the vertices and edges are
important. For example, in a social network, a vertex can
be described with a property that represents the age of a
person while the topological structure could represent
different types of relationships (directed edges) with a
group of people. Each of these relations can be described
by a start date property. Each vertex is associated with a
basic descriptive attribute that represents its label while
each edge has a label that describes the type of relation-
ship between the connected vertices. The problem studied
in this paper is to query a graph associated with attributes
(called as attributed graph) based on both structural
and attribute conditions. Unfortunately, this problem did
not catch much attention in the literature and there is

no solid foundation for building query engines that can
support a combination of different types of queries over
large graphs. Formally, an attributed graph is denoted as
ðV ; E; Lv; Le; Fv; Fe;Λv;ΛeÞ where V is the set of vertices;
EDV � V is the set of edges joining two distinct vertices;
Lv is the set of vertex labels; Le is the set of edge labels; FV
is a function V-Lv that assigns labels to vertices and Fe is a
function E-Le that assigns labels to edges; Λv ¼ fa1; a2;
…; amg is a set of m attributes that can be associated with
any vertex in V. Each vertex vAV can be described with an
attribute vector ½a1ðvÞ;…; amðvÞ�, where aj(v) is the attri-
bute value of vertex v on attribute aj. Λe ¼ fb1; b2;…; bng is
a set of n attributes that can be associated with any edge in
E. Each edge eAE can be described with an attribute vector
½b1ðeÞ;…; bnðeÞ� where bk(e) is the attribute value of edge e
on attribute bk.

Fig. 1 shows a snippet of an example large graph where
a vertex represents an entity instance (e.g. author, paper,
conferences) and an edge represents a structural relation-
ship (e.g. co-author, affiliated, published). In addition, there
are attributes (e.g. age, keyword, location) that describe the
different graph vertices while other attributes (e.g. order,
title, month) describe the graph edges. In practice, a user
may need to pose a query on the large graph that can
involve more than one of the common graph query types.
Examples of these queries are:

(1) Find the names of two authors, X and Y, where X and Y

are connected by a path (sequence of edges) of any
length (number of edges), the author X is affiliated
at UNSW, the author Y is affiliated at Microsoft and

Fig. 1. An example attributed graph.

S. Sakr et al. / Information Systems 41 (2014) 45–7346



Download	English	Version:

https://daneshyari.com/en/article/396875

Download	Persian	Version:

https://daneshyari.com/article/396875

Daneshyari.com

https://daneshyari.com/en/article/396875
https://daneshyari.com/article/396875
https://daneshyari.com/

