
Efficient co-processor utilization in database
query processing$

Sebastian Breß a,n , Felix Beier b, Hannes Rauhe b,c, Kai-Uwe Sattler b,
Eike Schallehn a, Gunter Saake a

a Otto von Guericke University Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
b Ilmenau University of Technology, P.O. Box 100 565, D-98684 Ilmenau, Germany
c SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

a r t i c l e i n f o

Article history:
Received 8 May 2013
Received in revised form
17 May 2013
Accepted 18 May 2013
Recommended by: D. Shasha
Available online 25 May 2013

Keywords:
Query optimization
Learning-based decision model
Database co-processing
Modern hardware architectures
In-memory databases

a b s t r a c t

Specialized processing units such as GPUs or FPGAs provide great opportunities to speed
up database operations by exploiting parallelism and relieving the CPU. However,
distributing a workload on suitable (co-)processors is a challenging task, because of the
heterogeneous nature of a hybrid processor/co-processor system. In this paper, we present
a framework that automatically learns and adapts execution models for arbitrary
algorithms on any (co-)processor. Our physical optimizer uses the execution models to
distribute a workload of database operators on available (co-)processing devices. We
demonstrate its applicability for two common use cases in modern database systems.
Additionally, we contribute an overview of GPU-co-processing approaches, an in-depth
discussion of our framework's operator model, the required steps for deploying our
framework in practice and the support of complex operators requiring multi-dimensional
learning strategies.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent trends in new hardware and architectures have
gained considerable attention in the database community.
Processing units such as Graphics Processing Units (GPU) or
Field Programmable Gate Arrays (FPGA) provide advanced
capabilities for massively parallel computation. Database
processing can take advantage of such units not only by
exploiting this parallelism, e.g., in query operators (either
as task or data parallelism), but also by offloading compu-
tation from the Central Processing Unit (CPU) to these co-
processors, saving CPU time for other tasks. In our work,

we focus on General Purpose Computing on GPUs (GPGPU)
and its applicability for database operations.

The adaption of algorithms for GPUs typically faces two
challenges. First, the GPU architecture demands a fine-
grained parallelization of the computation task. For exam-
ple, Nvidia's Fermi GPUs consist of up to 512 thread
processors, which are running in parallel lock step mode,
i.e., threads execute the same instruction in an Single
Instruction Multiple Data (SIMD) fashion on different input
partitions, or idle at differing branches [2].

Second, processing data on a GPU requires data trans-
fers between the host's main memory and the GPU's
VRAM. Depending on each algorithm's ratio of computa-
tional complexity to I/O data volume this copy overhead
may lead to severe performance impacts [3].

Thus, it is not always possible to benefit from massive
parallel processing supported by GPUs or any other kind of
co-processors. Assuming an efficient parallelization is
implemented, break-even points have to be found where
computational speedups outweigh possible overheads. To

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.is.2013.05.004

☆ This paper is an extended and revised version of an earlier work [1].
n Corresponding author. Tel.: +49 3916752845; fax: +49 3916712020.
E-mail addresses: sebastian.bress@ovgu.de,

bress@iti.cs.uni-magdeburg.de, sebastianbress@gmx.de (S. Breß),
felix.beier@tu-ilmenau.de (F. Beier), hannes.rauhe@tu-ilmenau.de
(H. Rauhe), kus@tu-ilmenau.de (K.-U. Sattler), eike.schallehn@ovgu.de
(E. Schallehn), gunter.saake@ovgu.de (G. Saake).

Information Systems 38 (2013) 1084–1096

www.sciencedirect.com/science/journal/0306-4379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.05.004
http://dx.doi.org/10.1016/j.is.2013.05.004
http://dx.doi.org/10.1016/j.is.2013.05.004
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2013.05.004&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2013.05.004&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2013.05.004&domain=pdf
mailto:bress@iti.cs.uni-magdeburg.de
mailto:felix.beier@tu-ilmenau.de
mailto:hannes.rauhe@tu-ilmenau.de
mailto:eike.schallehn@ovgu.de
mailto:gunter.saake@ovgu.de
http://dx.doi.org/10.1016/j.is.2013.05.004


solve this scheduling decision, a system must be able to
generate precise estimations of total processing costs,
depending on available hardware, data volumes and dis-
tributions, and the system load when the system is
actually deployed. This is further complicated by the rather
complex algorithms which are required to exploit the
processing capabilities of GPUs and for which precise cost
estimations are difficult.

We address this challenge by presenting a self-tuning
framework that abstracts from the underlying hardware
platform as well as the actual task to be executed. It
“learns” cost functions to support the scheduling decision
and adapts themwhile running the tasks. We demonstrate
the applicability of our approach on three problems
typically faced in database systems which could benefit
from co-processing with GPUs.

As extension to our prior work [1], we contribute a
summary of co-processing approaches for databases and
provide an in-depth discussion of the operator model
that is used by the framework as well as its restrictions.
Further, required steps for deploying it in practice are
outlined and the model has been improved to support
multi-dimensional parameters.

2. Co-processing approaches for databases systems

In the last decade GPUs became powerful and versatile
enough to execute some general purpose calculations
faster than CPUs. In this section, we contribute a short
survey and classification of DBMS operations that can be
offloaded to co-processors, especially the GPU. We intro-
duce two important use cases in detail and show why we
need automatic scheduling for these operations.

2.1. Co-processors in a DBMS

Fig. 1 puts the research in the field of database co-
processing in three different classes, namely query proces-
sing, query optimization, and database tasks.

Query processing: We can find a plenitude of research
that focuses on using GPUs and other co-processors to
accelerate relational operators. Especially for joins there is
a large variety of approaches for executing them on the
GPU [4–6], on FPGAs [7], and even on Network Processing
Units [8]. Other work also addresses the co-processing of
all relational operators [9–11]. Index scan acceleration
was investigated by Beier et al. [12] and Kim et al. [13].

Knn-search was studied by Wang et al. [14], Garcia et al.
[15] and Barrientos et al. [16]. Spatial range queries were
investigated by Pirk et al. [17]. There is also work addres-
sing sorting [18], online aggregation [19] and XML path
filtering [20]. There are several approaches addressing
MapReduce, e.g., He et al. developed Mars [21].

Query optimization: Augustyn and Zederowski describe
how to calculate the query selectivity estimation with a
DCT algorithm on the GPU [22]. Heimel and Markl use
kernel density estimation to estimate the query selectivity
[23] and see this as a first step to optimize queries with the
help of a co-processor.

Database tasks: There are more calculation intensive
operations that are executed by the DBMS to maintain the
stored data. Krüger et al. studied the process of merging
the update buffer into the main storage of an In-Memory
Column Store with the help of a GPU [24]. Data compres-
sion on GPUs was investigated in [25,26]. He et al. focused
on transactional processing with graphic cards [27].

They all have in common that the operation or an
essential part of it can be offloaded to the co-processor.
Because of the offloading itself this involves some over-
head, i.e., for small problem sizes the overhead often
dominates the actually execution time. Also, the para-
meters of the operation and the data distribution change
the calculation in a way that it does not fit to the co-
processor's architecture anymore. Therefore, we cannot
say that the operation is always faster on the co-processor
than on the CPU counterpart and vice versa. Furthermore,
without knowledge of the hardware, an a priori config-
uration is likely to be unfeasible and the user of the DBMS
is not able to decide which version is best. Therefore, a
hybrid scheduling framework is needed which chooses
automatically the fastest algorithms depending on the
operation to perform, its parameters, and the properties
of data. Furthermore, it may be beneficial to utilize both,
CPU and GPU, to increase throughput. Every use case can
be seen as one operator, where we can decide to offload
the calculation to a potential co-processor or execute it on
the CPU. We choose two use cases and executed them as
operator with the help of our framework.1

Fig. 1. Classification of co-processing approaches.

1 In the non-extended version of this paper [1], another “Update
Merge” use case was discussed. We left it out for the sake of space to
discuss the model improvements compared to the framework of the
original version.

S. Breß et al. / Information Systems 38 (2013) 1084–1096 1085



Download	English	Version:

https://daneshyari.com/en/article/396887

Download	Persian	Version:

https://daneshyari.com/article/396887

Daneshyari.com

https://daneshyari.com/en/article/396887
https://daneshyari.com/article/396887
https://daneshyari.com/

