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The paper presents results on approximation in residuated lattices given that closeness is 
assessed by means of biresiduum. We describe central points and optimal central points 
of subsets of residuated lattices and examine several of their properties. In addition, we 
present algorithms for two problems regarding optimal approximation.
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1. Introduction and preliminaries

Functions on lattices related to concepts of magnitude and distance, such as valuations and metrics, received considerable 
attention in lattice theory, see e.g. [4, Chap. II and X]. In this paper, we study certain problems related to closeness in 
complete residuated lattices, which is represented by the so-called biresiduum. Recall that a complete residuated lattice 
[16] is a structure L = 〈L, ⊗, →, ∧, ∨, 0, 1〉 such that 〈L, ∧, ∨, 0, 1〉 is a complete lattice, 〈L, ⊗, 1〉 is a commutative monoid, 
and ⊗ (multiplication) and → (residuum) form an adjoint pair, i.e. a ⊗b ≤ c iff a ≤ b → c. Examples of residuated lattices are 
abundant in mathematics and logic [8,13]. In what follows, we use the following three well-known examples of complete 
residuated lattices on L = [0, 1] induced by continuous t-norms [14]: the standard Łukasiewicz algebra (a ⊗ b = max(0, a +
b −1), a → b = min(1, 1 −a +b)), the standard product algebra (a ⊗b = a ·b, a → b = 1 if a ≤ b, and a → b = b/a otherwise), 
also called the standard Goguen algebra, the standard Gödel algebra (a ⊗ b = min(a, b), a → b = 1 if a ≤ b, and a → b = b
otherwise). It is well known [1,12] that a biresiduum ↔, defined in any residuated lattice by

a ↔ b = (a → b) ∧ (b → a),

satisfies

a ↔ b = 1 iff a = b, (1)

a ↔ b = b ↔ a, (2)

(a ↔ b) ⊗ (b ↔ c) ≤ a ↔ c. (3)

Hence, a ↔ b may naturally be interpreted as an element in L representing a degree of closeness (similarity) of a and b, 
with (a1 ↔ b1) ≤ (a2 ↔ b2) meaning that a2 and b2 are closer (more similar) to each other than a1 and b1. Note that 
(1)–(3) resemble dual versions of the axioms of a metric with a generalized triangular inequality. Indeed, for the standard 
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Łukasiewicz algebra, d↔(a, b) = 1 − (a ↔ b) is a [0, 1]-valued metric on [0, 1]. This metric coincides with the usual Euclidean 
metric and is called the Chang distance function [6]. More generally, using d↔(a, b) = f (a ↔ b) one obtains a metric from a 
biresiduum of a continuous Archimedean t-norm with an additive generator f [14]. For the standard Gödel algebra, in which 
case the t-norm is not Archimedean, d↔(a, b) = 1 − (a ↔ b) is a [0, 1]-valued ultrametric on [0, 1]. General relationships 
between fuzzy equivalences and metric structures along this line, including metrics, ultrametrics, and in general so-called 
G-metrics, are found in [15]. These relationships show that similarities represented by biresidua are closely related to 
metric-like structures and are richer than the ordinary metrics.

Note also that residuated lattices and their generalizations, developed initially within the studies of ring ideals [16], are 
the main structures of truth degrees used in many-valued logic [9–11] in which biresiduum is the truth function of the 
logical connective of equivalence.

In this paper, we present results motivated by the following problem. Given a set of elements of a residuated lattice, 
what are its central points, i.e. elements which are close/similar (as much as possible or to some specified level) to every 
element of the set, provided closeness/similarity is assessed by means of biresiduum?

2. Preliminaries

We assume familiarity with some basic properties of residuated lattices [16] and basic concepts from tolerance relations 
on complete lattices [7,17]. In this section, we recall briefly what we use in the paper.

Each residuated lattice satisfies the following conditions:

(a ⊗ b) → c = a → (b → c), (4)

a ⊗ (a → b) ≤ b, (5)

a → (a ⊗ b) ≥ b. (6)

Moreover,

a1 ≤ a2 and b1 ≤ b2 implies a1 ⊗ b1 ≤ a2 ⊗ b2 (7)

and a2 → b1 ≤ a1 → b2. (8)

The following conditions are satisfied in each complete residuated lattice:

a → (
∧

b∈B b) = ∧
b∈B(a → b), (9)

(
∨

b∈B b) → a = ∧
b∈B(b → a), (10)

a → (
∨

b∈B b) ≥ ∨
b∈B(a → b), (11)

(
∧

b∈B b) → a ≥ ∨
b∈B(b → a), (12)

a ⊗ (
∨

b∈B b) = ∨
b∈B(a ⊗ b), (13)

a ⊗ (
∧

b∈B b) ≤ ∧
b∈B(a ⊗ b). (14)

A tolerance is a reflexive and symmetric binary relation. A block of a tolerance T on a set U is a subset B of U for which 
B × B ⊆ T . A maximal block of T is a block B of T which is maximal with respect to set inclusion. A collection of maximal 
tolerance blocks of T is denoted by U/T and forms a covering of U . A class of T given by u ∈ U is the set [u]T = {v ∈
U | u T v}. Clearly, if T is an equivalence, maximal blocks as well as classes of T are just the equivalence classes of T .

Throughout the paper, L denotes a complete residuated lattice and e an element of its support set L. By ≈e , we denote 
the tolerance on L defined by

a ≈e b iff a ↔ b ≥ e.

3. Central points, central sets, and maximal blocks

For B ⊆ L, we set

Ce(B) = {c ∈ L | for each b ∈ B , c ↔ b ≥ e} . (15)

We call Ce(B) the e-central set of B and its elements e-central points of B .

Lemma 3.1. c ∈ Ce(B) iff (c → ∧
B) ∧ (

∨
B → c) ≥ e.

Proof. (9) and (10) yield c → (
∧

b∈B b) = ∧
b∈B(c → b) and (

∨
b∈B b) → c = ∧

b∈B(b → c). �
Denoting by [p, q] the interval {x ∈ L | p ≤ x ≤ q} ⊆ L, we get:
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