
MFIBlocks: An effective blocking algorithm for entity resolution

Batya Kenig n, Avigdor Gal

Technion-Israel Institute of Technology, Haifa, Israel

a r t i c l e i n f o

Available online 2 December 2012

Keywords:

Entity resolution

Blocking

a b s t r a c t

Entity resolution is the process of discovering groups of tuples that correspond to the

same real-world entity. Blocking algorithms separate tuples into blocks that are likely to

contain matching pairs. Tuning is a major challenge in the blocking process and in

particular, high expertise is needed in contemporary blocking algorithms to construct a

blocking key, based on which tuples are assigned to blocks. In this work, we introduce

a blocking approach that avoids selecting a blocking key altogether, relieving the user

from this difficult task. The approach is based on maximal frequent itemsets selection,

allowing early evaluation of block quality based on the overall commonality of its

members. A unique feature of the proposed algorithm is the use of prior knowledge of

the estimated size of duplicate sets in enhancing the blocking accuracy. We report on a

thorough empirical analysis, using common benchmarks of both real-world and

synthetic datasets to exhibit the effectiveness and efficiency of our approach.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Entity resolution is a fundamental problem in data
integration. It refers to the problem of determining which
tuples (using relational notation) resolve to the same real-
world entity. At the heart of the entity resolution process
is the challenge to match tuples that share no unique
identifiers, may come from non-matching schemata, and
may consist of typos and out-of-date or missing informa-
tion. Entity resolution algorithms typically compare
the content of tuples to determine if they match and
merge matching tuples into one. Such a comparison
may be prohibitive for big datasets if all tuple pairs are
compared and hence pairwise comparison is typically
preceded by a blocking phase, a procedure that divides
tuples into mutually exclusive subsets called blocks.

Tuples assigned to the same block are ideally resolved
to the same real-world entity. In practice, tuples in a

block are all candidates for the more rigorous tuple pair-
wise comparison. Therefore, blocking algorithms should
be designed to produce quality blocks, containing as many
tuple matches and avoiding as many non-matches as
possible. Balancing the two requirements calls for an optimal
block size that should not be too small, to avoid false
negatives, or too large, to avoid false positives. Larger blocks
also increase the time spent on pair-wise tuple comparison
and hence, blocking algorithms aim at balancing the need to
reduce false negatives and the need to reduce performance
overhead.

Several blocking algorithms were proposed in the
literature, e.g., sorted neighborhood [1], canopy clustering
[2], and q-gram indexing [3]. In this work we offer a novel
blocking algorithm, dubbed MFIBlocks, that is based on
iteratively applying an algorithm for mining Maximal
Frequent Itemsets [4]. MFIBlocks offers four major unique
features. Firstly, MFIBlocks waives the need to manually
design a blocking key, the value of one or more of a tuple’s
attributes. Blocking keys in contemporary blocking
algorithms have to be carefully designed to avoid false
negatives by assigning matching tuples to different
blocks. Therefore, attributes in the blocking key should

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.11.008

n Corresponding author. Tel.: þ972 528461692

E-mail addresses: batyak@tx.technion.ac.il,

batya.kenig@gmail.com (B. Kenig), avigal@ie.technion.ac.il (A. Gal).

Information Systems 38 (2013) 908–926

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2012.11.008
http://dx.doi.org/10.1016/j.is.2012.11.008
http://dx.doi.org/10.1016/j.is.2012.11.008
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.11.008&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.11.008&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.11.008&domain=pdf
mailto:batyak@tx.technion.ac.il
mailto:batya.kenig@gmail.com
mailto:avigal@ie.technion.ac.il
http://dx.doi.org/10.1016/j.is.2012.11.008


contain few errors and missing values and the design of
a blocking key should take into account the frequency
distribution of values in the attributes of the blocking key
to balance block sizes. MFIBlocks relieves the designer
from the difficult task of constructing a blocking key.

Second, MFIBlocks localizes the search for similar tuples
and is able to uncover blocks of tuples that are similar in
multiple, possibly overlapping sets of attributes. MFIBlocks

allows a dynamic, automatic, and flexible selection of a
blocking key, so that different blocks can be created based
on different keys. This approach is in line with the state-of-
the-art in clustering literature (see, e.g., [5]) and extends
the current perception of a single-key-fits-all .

Blocks, created by the algorithm, are constrained to
satisfy the compact set (CS) and sparse neighborhood (SN)
[6] properties. As such, local structural properties of the
dataset are used during the discovery and evaluation of
tuple clusters and the number of comparisons for each
tuple is kept low, even though the same tuple can appear
in several clusters (using multiple keys) simultaneously.

Finally, MFIBlocks is designed to discover entity sets of
matching tuples with largely varying sizes. MFIBlocks effec-
tively utilizes a-priori knowledge of the sizes of matching
entity sets, by discovering clusters of the appropriate size
having the largest possible commonality.

This paper introduces the MFIBlocks algorithm, dis-
cusses its properties, and presents a thorough empirical
analysis, demonstrating its superior effectiveness. We
offer techniques to make the execution time performance
of the algorithm attractive, balancing execution time with
effectiveness. The novelty of our paper is as follows:

� We present a novel blocking algorithm that reduces
the effort of manual tuning and enables locating
clusters of similar tuples in multiple, possibly over-
lapping sets of attributes.
� We provide a thorough empirical analysis of the algo-

rithm performance, using both real-world and synthetic
datasets, and show its superior effectiveness over com-
mon benchmarks.
� We offer methods to ensure the efficiency of the

algorithm, demonstrating the trade-off between execu-
tion time and effectiveness.

The rest of the paper is organized as follows. Section 2
provides a brief overview of the entity resolution process
and frequent itemset mining. The building blocks of the
proposed approach are provided in Section 3. The algo-
rithm is presented in Section 4. In Section 5 we provide an
empirical analysis over several benchmark datasets.
Section 6 provides an overview of related work, positioning
our work on this background. We conclude in Section 7
with a summary and a discussion of future work.

2. Preliminaries

The general, unsupervised entity resolution process
illustrated in Fig. 1 contains blocking, comparison and
classification stages. Occasionally, a standardization process
precedes these steps to increase the process effectiveness.

The output of the blocking stage is a set of blocks where
each pair of tuples in a block is considered a candidate pair.
Only candidate pairs are then compared and other pairs are
automatically classified as non-matches .

Using similarity measures such as the Jaccard coeffi-
cient [7], candidate pairs are classified as matching
or non-matching . A tuple pair ðt1,t2Þ, over a schema of
k comparable attributes, is represented as a vector
v¼ ½v1, . . . ,vk�. Each vi is a measure of the similarity of
the i-th attribute. In most cases, the entries in the vector v

are in the range ½0,1�. A function f over the values of these
entries is used to classify a pair according to a predefined
threshold.

In this paper we focus on the blocking stage and
suggest using maximal frequent itemsets to generate
blocks of tuples as candidates for the classification stage.
For completeness sake, we now provide an overview of
the concepts of frequent and maximal frequent itemsets
[8]. Frequent itemsets originated from the data mining
field and was used in other fields as well, e.g., for
identifying similar Web documents [9]. This overview
uses the notions of items and transactions, based on the
native vocabulary of data mining. It is worth noting that
the term transaction has a different (albeit related) mean-
ing to the same term in the database literature, referring
to a bag of items from a raw dataset, e.g., billing transac-
tions. Let M¼ fI1,I2, . . . ,Img be a set of items and let
T ¼/T1,T2, � � � ,TnS be a set of transactions. A transaction
Ti ¼ ðtid,IÞ with identifier tid contains a set of items IDM.
The support of some set of items IDM is the set of
transactions in T that contain all items in I. Each transac-
tion possibly contains additional items.

Example 1. Table 1 contains five transactions with the
items M¼ fa1,a2,b1,b2,b3,c1,c2,c3,c4g. Transaction t1

Database D Blocking

Tuple pair 
comparison Classification

Match Non-Match

tuples

candidate pairs

candidate pair+
similarity measure+
threshold

Fig. 1. Entity resolution process.

Table 1
Sample transaction database.

Transaction Items

t1 a1 ,b1 ,c1

t2 a1 ,b1 ,c2

t3 a2 ,b2 ,c3

t4 a2 ,b2 ,c2

t5 a1 ,b3 ,c4

B. Kenig, A. Gal / Information Systems 38 (2013) 908–926 909



Download English Version:

https://daneshyari.com/en/article/396931

Download Persian Version:

https://daneshyari.com/article/396931

Daneshyari.com

https://daneshyari.com/en/article/396931
https://daneshyari.com/article/396931
https://daneshyari.com

