
Core schema mappings: Scalable core computations
in data exchange$

Giansalvatore Mecca a,n, Paolo Papotti b, Salvatore Raunich c

a Dipartimento di Matematica e Informatica, Universit �a della Basilicata, viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy
b Universit�a Roma Tre, Roma, Italy
c University of Leipzig, Leipzig, Germany

a r t i c l e i n f o

Article history:

Received 7 March 2011

Received in revised form

22 March 2012

Accepted 26 March 2012

Recommended by: L. Wong
Available online 3 April 2012

Keywords:

Schema mappings

Data exchange

Core computation

a b s t r a c t

Research has investigated mappings among data sources under two perspectives. On

the one side, there are studies of practical tools for schema mapping generation; these

focus on algorithms to generate mappings based on visual specifications provided by

users. On the other side, we have theoretical researches about data exchange. These

study how to generate a solution – i.e., a target instance – given a set of mappings

usually specified as tuple generating dependencies. Since the notion of a core solution

has been formally identified as an optimal solution, it is very important to efficiently

support core computations in mapping systems. In this paper, we introduce several

new algorithms that contribute to bridge the gap between the practice of mapping

generation and the theory of data exchange. We show how, given a mapping scenario, it is

possible to generate an executable script that computes core solutions for the correspond-

ing data exchange problem. The algorithms have been implemented and tested using

common runtime engines to show that they guarantee very good performances, orders of

magnitudes better than those of known algorithms that compute the core as a post-

processing step.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Integrating data coming from disparate sources is a crucial
task in many applications. An essential requirement of any
data integration task is that of manipulating mappings

between sources. Mappings are executable transforma-
tions – say, SQL or XQuery scripts – that specify how an
instance of the source repository should be translated into
an instance of the target repository. We may identify two
broad research lines in the literature.

On the one side, we have studies on practical tools and
algorithms for schema mapping generation. In this case, the
focus is on the development of systems that take as input
an abstract specification of the mapping, usually made of
a bunch of correspondences between the two schemas,
and generate the mappings and the executable scripts
needed to perform the translation. This research topic was
largely inspired by the seminal papers about the Clio
system [26,27]. The original algorithm has been subse-
quently extended in several ways [17,5,2,29,7] and var-
ious tools have been proposed to support users in the
mapping generation process. More recently, a benchmark
has been developed [1] to compare research mapping
systems and commercial ones.

On the other side, we have theoretical studies about
data exchange. Several years after the development of
the initial Clio algorithm, researchers have realized that

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.03.004

$ Portions of this paper have appeared under the title Core Schema

Mappings in the Proceedings of the ACM SIGMOD 2009 Conference.
n Corresponding author. Tel. þ39 0971 205855;

fax. þ39 0971 205897.

E-mail addresses: giansalvatore.mecca@gmail.com,

giansalvatore.mecca@unibas.it (G. Mecca).

Information Systems 37 (2012) 677–711

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.03.004
dx.doi.org/10.1016/j.is.2012.03.004
dx.doi.org/10.1016/j.is.2012.03.004
mailto:giansalvatore.mecca@gmail.com
mailto:giansalvatore.mecca@unibas.it
dx.doi.org/10.1016/j.is.2012.03.004


a more solid theoretical foundation was needed in order
to consolidate the practical results obtained on schema
mapping systems. This consideration has motivated a rich
body of research in which the notion of a data exchange

problem [12] was formalized, and a number of theoretical
results were established. In this context, a data exchange

setting is a collection of mappings – usually specified
as tuple generating dependencies (tgds) [4] – that are given
as part of the input; therefore, the focus is not on the
generation of the mappings, but rather on the character-
ization of their properties. This has brought to an elegant
formalization of the notion of a solution for a data
exchange problem, and of operators that manipulate
mappings in order, for example, to compose [14] or invert
[11,3] them.

However, for a long time, these two research lines have
progressed in a rather independent way. To give a clear
example of this, consider the fact that there are many
possible solutions for a data exchange problem. A natural
question is the following: ‘‘which solution should be
materialized by a mapping system?’’ A key contribution
of data exchange research was the formalization of the
notion of core [13] universal solution, which was identi-
fied as the ‘‘optimal’’ solution for a data exchange sce-
nario. Informally speaking, the core universal solution has
a number of nice properties: it is ‘‘irredundant’’, since
it is the smallest among the solutions that preserve the
semantics of the exchange, and it represents a ‘‘good’’
instance for answering conjunctive queries over the target
database. It can therefore be considered a natural require-
ment for a schema mapping system to generate execu-
table scripts that materialize core solutions.

Unfortunately, there is yet no schema mapping genera-
tion algorithm that natively produces executable scripts that
compute the core. On the contrary, the solution produced
by known schema mapping systems – called a canonical

solution – typically contains quite a lot of redundancy. This
is partly due to the fact that computing cores is a challeng-
ing task.

A possible approach to the generation of core solutions
for a relational data exchange problem is the following:
(i) first, to generate a canonical solution by chasing the
source-to-target tgds; to do this, a mapping system
typically generates an SQL or XQuery script that performs
this step very efficiently, even on large source instances;
(ii) then, to apply a post-processing algorithm for core
identification.

Several polynomial algorithms have been identified to
this end [13,18]. These algorithms provide a very general
answer to the problem of computing core solutions for a
data exchange setting. Also, an implementation of the
core-computation algorithm in [18] has been developed
[30] by using a combination of SQL for database access
and a controlled form of recursive control-logic imple-
mented in Java.

Although polynomial, experience with these algo-
rithms shows that they hardly scale to large mapping
scenarios. In fact, they exhaustively look for endomorph-
isms inside the canonical universal solution in order to
identify which null values and which tuples can be
removed. This kind of computation can take very high

computing times, even on databases of a few thousand
tuples, as shown in our experiments.

This paper makes several important contributions
towards the goal of making the computation of core solu-
tions a scalable functionality of mapping systems. More
specifically:

� given a mapping scenario consisting of source-to-
target tgds, we introduce a rewriting algorithm that
generates a new set of dependencies that can be used
to generate core solutions for the original tgds; these
dependencies can be translated into an SQL script
and ran inside any conventional database engine,
thus achieving a very high degree of flexibility and
performance;
� the algorithm has been implemented into the þSPICY

mapping system; in the paper, we conduct an experi-
mental evaluation on large mapping scenario that
confirms the scalability of our solution;
� the rewriting algorithm is based on a new character-

ization of the core, in terms of witness blocks and
expansions; we introduce these notions and show
how they represent a natural tool for the rewriting of
the given tgds.

The algorithms developed in this paper concentrate on
mapping scenarios made of source-to-target tgds only.
However, as it will be discussed in Section 2.1, they represent
an essential building block for more general algorithms that
handle larger classes of constraints.

2. Overview

Consider the mapping scenario informally described in
Fig. 1, where also a source instance is shown. The source
database contains tables about books coming from three
different data sources, namely the Internet Book Database

(IBD), the Library of Congress database (LOC), and the
Internet Book List (IBL).

The desired mapping can be expressed using the
following set of tuple-generating dependencies (tgds):

m1:8t,p : LOCðt,pÞ-(I : Bookðt,IÞ4PublisherðI,pÞ

m2:8t,id : IBLBookðt,idÞ-Bookðt,idÞ

m3:8id,p : IBLPublisherðid,pÞ-Publisherðid,pÞ

m4:8t : IBDBookðtÞ-(N : Bookðt,NÞ

It can be seen how each source has a slightly different
organization wrt the others. In particular, the IBD source
contains data about book titles only; mapping m4 copies
titles to the Book table in the target. The LOC source
contains book titles and publisher names in a single table;
these are copied to the target tables by mapping m1,
which also ‘‘invents’’ a value to correlate the key and the
foreign key. Finally, the IBL source contains data about
books and their publishers in separate tables; these data
are copied to the target by mappings m2,m3; note that in
this case we do not need to invent any values.

G. Mecca et al. / Information Systems 37 (2012) 677–711678



Download English Version:

https://daneshyari.com/en/article/396975

Download Persian Version:

https://daneshyari.com/article/396975

Daneshyari.com

https://daneshyari.com/en/article/396975
https://daneshyari.com/article/396975
https://daneshyari.com

