
International Journal of Approximate Reasoning 55 (2014) 1708–1727

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Inclusion–exclusion principle for belief functions

F. Aguirre a, S. Destercke b,∗, D. Dubois c, M. Sallak b, C. Jacob c,d

a Phimeca, 18/20 boulevard de Reuilly, F-75012 Paris, France
b CNRS/UTC, UMR Heudiasyc, Centre de recherche de Royallieu, 60205 Compiègne, France
c IRIT CNRS, Université Paul Sabatier de Toulouse, France
d ISAE, Toulouse, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 October 2013
Received in revised form 19 April 2014
Accepted 24 April 2014
Available online 5 May 2014

Keywords:
Belief function
Inclusion–exclusion principle
Reliability analysis
Boolean formula
Independence

The inclusion–exclusion principle is a well-known property in probability theory, and is
instrumental in some computational problems such as the evaluation of system reliability
or the calculation of the probability of a Boolean formula in diagnosis. However, in the
setting of uncertainty theories more general than probability theory, this principle no
longer holds in general. It is therefore useful to know for which families of events it
continues to hold. This paper investigates this question in the setting of belief functions.
After exhibiting original sufficient and necessary conditions for the principle to hold,
we illustrate its use on the uncertainty analysis of Boolean and non-Boolean systems in
reliability.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Probability theory is the most well-known approach to model uncertainty. However, even when the existence of a sin-
gle probability measure is assumed, it often happens that its distribution is only partially known. This is particularly the
case in the presence of severe uncertainty (few samples, imprecise or unreliable data, etc.) or when subjective beliefs are
elicited (e.g., from experts). Some authors use a selection principle that brings us back to a precise distribution (e.g., maxi-
mum entropy [23]), but other ones [28,26,16] have argued that in some situations involving imprecision or incompleteness,
uncertainty cannot be modelled faithfully by a single probability measure. The same authors have advocated the need for
frameworks accommodating imprecision, their efforts resulting in different frameworks such as possibility theory [16], belief
functions [26], imprecise probabilities [28], info-gap theory [4], etc. that are formally connected [29,17]. Regardless of inter-
pretive issues, the formal setting of belief functions offers a good compromise between expressiveness and calculability, as
it is more general than probability theory, yet in many cases remains more tractable than imprecise probability approaches.

Nevertheless using belief functions is often more computationally demanding than using probabilities. Indeed, its higher
level of generality prevents the use of some properties, valid in probability theory, that help simplify calculations. This is the
case, for instance, for the well-known and useful inclusion–exclusion principle (also known as Sylvester–Poincaré equality).

Given a space X , a probability measure P over this space and any collection An = {A1, . . . , An|Ai ⊆ X } of measurable
subsets of X , the inclusion–exclusion principle states that
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where |I | is the cardinality of I . This equality allows us to easily compute the probability of
⋃n

i=1 Ai , when the events
Ai are stochastically independent, or when their intersections are disjoint. This principle has been applied to numerous
problems, including the evaluation of the reliability of complex systems. It does not hold for belief functions, and only an
inequality remains. However, it is useful to investigate whether or not an equality can be restored for specific families An
of events, in particular the ones encountered in applications to diagnosis and reliability. The main contribution of this paper
is to give a positive answer to this question and to provide conditions characterising the families of events for which the
inclusion–exclusion principle still holds in the belief function setting.

This paper is organised as follows. First, Section 2 provides sufficient and necessary conditions under which the
inclusion–exclusion principle holds for belief functions in general spaces; it is explained why the question may be more
difficult for the conjugate plausibility functions. Section 3 then studies how the results apply to the practically interesting
case where events Ai and focal elements are Cartesian products in a multidimensional space. Section 4 investigates the
particular case of binary spaces, and considers the calculation of the degree of belief and plausibility of a Boolean formula
expressed in Disjunctive Normal Form (DNF). Section 5 then shows that specific events described by means of monotone
functions over a Cartesian product of totally ordered discrete spaces meet the conditions for the inclusion–exclusion princi-
ple to hold. Section 6 is devoted to illustrative applications of the preceding results to the field of reliability analysis (both
for the binary and non-binary cases), in which the use of belief functions is natural and the need for efficient computation
schemes is an important issue. Finally, Section 7 compares our results with those obtained when assuming stochastic inde-
pendence between ill-known probabilities, displaying those cases for which these results coincide and those for which they
disagree.

This work extends the results concerning the computation of uncertainty bounds within the belief function framework
previously presented in [22,1]. In particular, we provide full proofs as well as additional examples. We also discuss the
application of the inclusion/exclusion principle to plausibilities, as well as a comparison of our approach with other types
of independence notions proposed for imprecise probabilities (two issues not tackled in [22,1]).

2. General additivity conditions for belief functions

After introducing some notations and the basics of belief functions (Section 2.1), we explore in Section 2.2 general
conditions for families of subsets for which the inclusion–exclusion principle holds for belief functions. We then look more
closely at the specific case where the focal elements of belief functions are Cartesian products of subsets. Readers not
interested in technical details and familiar with belief functions may directly move to Section 3.

2.1. Setting

A mass distribution [26] defined on a (finite) space X is a mapping m : 2X → [0,1] from the power set of X to
the unit interval such that m(∅) = 0 and

∑
E⊆X m(E) = 1. A set E that receives a strictly positive mass is called a focal

element, and the set of focal elements of m is denoted by Fm . The mass function m can be seen as a probability distribution
over sets, in this sense it captures both probabilities and sets: any probability p can be modelled by a mass m such that
m({x}) = p(x) and any set E can be modelled by the mass m(E) = 1. In the setting of belief functions, a focal element is
understood as a piece of incomplete information of the form x ∈ E for some parameter x of interest. Then m(E) can be
understood as the probability that all that is known about x is that x ∈ E; in other words, m(E) is a probability mass that
should be divided over elements of E but is not, due to a lack of information.

From the mapping m are usually defined two set-functions, the belief and the plausibility functions, respectively defined
for any A ⊆ X as

Bel(A) =
∑
E⊆A

m(E), (2)

Pl(A) =
∑

E∩A �=∅
m(E) = 1 − Bel

(
Ac), (3)

with Ac the complement of A. They satisfy Bel(A) ≤ Pl(A). The belief function, which sums all masses of subsets that im-
ply A, measures how much event A is certain, while the plausibility function, which sums all masses of subsets consistent
with A, measures how much the event A is possible. Within the so-called theory of evidence [26], belief and plausibility
functions are interpreted as confidence degrees about the event A, and are not necessarily related to probabilities. However,
the mass distribution m can also be interpreted as the random set corresponding to an imprecisely observed random vari-
able [12], and the measures Bel and Pl can be interpreted as describing a set of probabilities, that is, we can associate to
them a set P(Bel) such that

P(Bel) = {
P
∣∣∀A,Bel(A) ≤ P (A) ≤ Pl(A)

}
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