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We develop a global sensitivity analysis to measure the robustness of the Bayesian
estimators with respect to a class of prior distributions. This class arises when we consider
multiplicative contamination of a base prior distribution. A similar structure was presented
by van der Linde [12]. Some particular specifications for this multiplicative contamination
class coincide with well known families of skewed distributions. In this paper, we explore
the skew-normal multiplicative contamination class for the prior distribution of the
location parameter of a normal model. Results of a Bayesian conjugation and expressions
for some measures of distance between posterior means and posterior variance are
obtained. We also elaborate on the behavior of the posterior means and of the posterior
variances through a simulation study.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian sensitivity analysis is concerned with the impact of different specifications for the prior distribution or the
likelihood function on the posterior distribution. If, for instance, a specific posterior inference is not much affected by these
choices, then we will say that this inference is robust. This approach is also known as robust Bayesian analysis.

In general, the robustness analysis supposes the likelihood f (x | θ) is fixed and consider a class � of prior distributions
to deal with the uncertainty in specifying one prior distribution. Robustness of a given statistical procedure is measured by
the size of the range of posterior measures obtained when the prior distribution varies over �. If this size is small, then
we say that the inference is robust under the class of prior distributions � considered and we conclude that the posterior
inference is not affected by a particular choice in �. This approach is called global robustness.

A possible class of priors � is obtained by a ‘contamination’ of an elicited base prior f0(θ). In this context, a well-studied
class of priors is the ε-contaminated class given by � = { f : f (θ) = (1 − ε) f0(θ) + εg(θ), ε ∈ [0,1] and g ∈ G} where θ is
the parameter of interest and G is a class of contaminating density functions. This class � may be interpreted as an additive
perturbation of the base density function f0(θ) (see [15]). Clearly � depends on both the level ε of contamination and the
contaminating density function g(·). Berger [6,7] discusses various other kinds of contamination.

Analogous to additive contamination, van der Linde [12] proposed multiplicative perturbation in both the likelihood
and the prior distribution. Here we explore this idea with a multiplicative class of contaminated priors given by �M =
{ f : f (θ) = f0(θ)w(θ) for some w ∈ G}, where G is a collection of non-negative functions such that f0(θ)w(θ) is a density
function for each w ∈ G . In addition, we assume that G contains the constant function w(θ) = 1, ∀θ , to ensure that �M
contains the base prior density f0(θ).
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About the motivation behind the proposal to work with a multiplicative class of contamination, the main interest in
working with this kind of contamination is the ability to change the symmetry of the distribution. For example, if f0(θ)

is symmetrical and unimodal then w(θ) induces an asymmetrization in the base density. Dey and Liu [8] discuss the use
of asymmetric priors in the context of prior elicitation from expert opinion. When the quantile specified by the experts
indicate a relationship like q0.75 − q0.5 > q0.5 − q0.25 or q0.75 − q0.5 > q0.5 − q0.25, where qp is the p-quantile, an asymmetric
prior is appropriate. However for easy of calculations a symmetric prior has been usually considered. A question of interest
is to understand the impact on the posterior estimates of this assumption.

For particular specifications, the multiplicative contamination class coincides with families of skewed distributions
known in the literature. For example, let �M be given by the multiplicative contamination class, where f0(θ) is given
by f p(θ; ξV,ΩV,hp) = |ΩV|−1/2h(p)(v(θ)) denotes the density function of an elliptically contoured distribution with loca-
tion ξV ∈ R

p , positive definite p × p dispersion matrix ΩV , density generator h(p) and v(θ) = (θ − ξV)T Ω−1
V (θ − ξV). For

w(θ), we considered the function

Fq(ξU + �T Ω−1
V (θ − ξV);0,ΩU − �T ΩV

−1�,h(q)

v(θ)
)

Fq(ξU;0,ΩU,h(q))
,

where � is a q × p real matrix controlling shape. The function Fr(x;0,Σ,h(r)) denotes the r-dimensional centered el-
liptical cumulative distribution with r × r dispersion matrix Σ and density generator h(r) , and h(q)

v(θ)
(u) = h(p+q){u +

v(θ)}/h(p)(v(θ)). Then, the prior distribution of θ is a unified skew elliptical distribution (SUE), denoted here by θ ∼
SUEp,q(ξV,ΩV,�,h(p+q), ξU,ΩU). The SUE distribution has been introduced in [1] and it is a particular case of distribu-
tions generated through selection mechanisms. More details about such selection mechanisms can be found in [2].

A particular distribution of SUE is obtained when the function h(p) is the p-variate normal generator function given by
(2π)−p/2e−u/2, for u > 0. In this situation, we obtain the unified skew-normal (SUN) distribution (see [1]) and denote it
by SUNp,q(ξV,ΩV,�,τU,ΩU). The univariate skew-normal distribution SUN1,1(μ,σ 2, λσ 2,0, σ 2(1 +λ2)) is the distribution
whose density function is given by f (θ) = 2φ(θ;μ,σ 2)Φ(λθ,λμ,σ 2), where φ(·;μ,σ 2) and Φ(·;μ,σ 2) corresponds to
the density and the cumulative distribution functions of a normal distribution with location parameter μ and scale pa-
rameter σ 2, respectively. The most common notation about this distribution in the literature is SN(μ,σ 2, λ) where the λ

represents the shape parameter controlling skewness. The standard skew-normal distribution is obtained when μ = 0 and
σ 2 = 1. In this situation, f (θ) corresponds to a density function of a standard skew-normal distribution with the shape
parameter λ, as proposed by Azzalini [4]. We denote this distribution by SN(λ).

Mukhopadhyay and Vidakovic [14] consider the skewed prior distributions to study the performance of linear Bayes
rules in estimating a normal mean. They showed that linear Bayes rules have reasonably well in comparison to exact Bayes
rules when the prior distribution is given by SN(λ). To justify the use of skew prior distributions, they study the situation
where the parameter space is truncated, for example Θ = [θ0,∞), but the truncation point θ0 is unknown. According to the
authors, ‘one way to incorporate this prior information about the parameter is elicitation of a prior with lighter tails on the
truncated side’ and they suggest to consider a family of skewed prior distributions and to study the results in the robust
Bayesian point of view.

In the context of contamination class of prior, if we consider Φ(.) fixed, φ(θ;μ,σ 2) as the base prior distribution and
the parameter λ varying over the R, then λ reflects the degree of contamination of the base prior, indicating less contami-
nation when it is near zero. The base prior distribution is obtained when λ = 0. The robustness study in the multiplicative
contamination class is developed considering how the changes in λ can affect the posterior distribution of θ or posterior
measures of this distribution.

Through hierarchical Bayes approach, Liseo and Loperfido [13] consider a skew prior distribution in the multivariate case,
but they do not explore robust Bayesian procedures.

In this work, we discuss the robustness of posterior mean and posterior variance under the skew-normal class of prior for
the location parameter of a normal distribution N(θ, τ 2), in two situations: when τ 2 is known and unknown. In Section 2
we review some properties of a general skew-normal distribution and present new results of Bayesian conjugation. In
Section 3 we obtain expressions for some robustness measures. In Section 4 we perform a simulation study to analyze the
measures obtained and discuss a possible conflict between the information provided by the likelihood and by the prior
distribution. We present our conclusions in Section 5.

The symbols φ(.) and Φ(.) correspond respectively to the density and the cumulative distribution functions of the
standard normal distribution.

2. The general multivariate skew-normal distribution and results of Bayesian conjugation

Suppose that X1, X2, . . . , Xn is a random sample from a normal distribution with location parameter θ and scale param-
eter τ 2.

Usually, the prior distribution specified for θ is the normal, that is conjugated to the statistical model considered. The
idea here is to propose a class of prior distributions that contains the normal distribution, but allows the inclusion of the
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