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Compositional models were initially described for discrete probability theory, and later ex-

tended for possibility theory and for belief functions in Dempster–Shafer (D–S) theory of

evidence. Valuation-based system (VBS) is an unifying theoretical framework generalizing

some of thewell known and frequently used uncertainty calculi. This generalization enables

us to not only highlight the most important theoretical properties necessary for efficient

inference (analogous to Bayesian inference in the framework of Bayesian network), but also

to design efficient computational procedures. Some of the specific calculi covered byVBS are

probability theory, a version of possibility theory where combination is the product t-norm,

Spohn’s epistemic belief theory, and D–S belief function theory. In this paper, we describe

compositional models in the general framework of VBS using the semantics of no-double

counting, which is central to the VBS framework. Also, we show that conditioning can be

expressed using the composition operator.We define a special case of compositionalmodels

called decomposablemodels, again in theVBS framework, anddemonstrate that for the class

of decomposable compositional models, conditioning can be done using local computation.

As all results are obtained for the VBS framework, they hold in all calculi that fit in the VBS

framework. For the D–S theory of belief functions, the compositional model defined here

differs from the one studied by Jiroušek, Vejnarová, and Daniel. The latter model can also

be described in the VBS framework, but with a combination operator that is different from

Dempster’s rule of combination. For the version of possibility theory in which combination

is the product t-norm, the compositional model defined here reduces to the one studied by

Vejnarová.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The framework of valuation-based systems (VBS) was introduced in [28,32,34] . The main idea behind VBS is to capture the

common features of various uncertainty calculi and other domains such as optimization, decision-making theories, database

systems, and solving systems of equations. Briefly, knowledge about a set of variables is represented by a set of functions

called valuations. Each valuation is associated with a subset of variables. There are two operators called combination and

marginalization. Combination allows us to aggregate knowledge, and marginalization allows us to coarsen knowledge to

a smaller set of variables. The combination of all valuations, called the joint valuation, represents the joint knowledge of

all variables. Making inferences can be described as finding marginals of the joint valuation for variables of interest. The

VBS framework can be used to describe various uncertainty theories such as probability theory, a version of possibility

theory where combination is the product t-norm [43], Spohn’s epistemic belief theory [37,30], and Dempster-Shafer (D-S)

belief function theory [26]. It can also be used to describe, e.g., propositional logic [29], solving systems of equations [25],
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optimization using dynamic programming [2,31], Bayesian decision-making by maximizing expected utility [33], relational

database theory [42], and other domains [24].

Besides the marginalization and combination operators in the VBS framework, we define an additional operator called

removal. Removal is an inverse of combination, and is useful for defining conditionals in the VBS framework. Conditionals

are useful in characterizing conditional independence relations. All of these operators are required to satisfy some basic

properties described as axioms. These axioms enable us to make inferences using local computation, using architectures

suchas theShenoy-Shafer architecture [35] thatusesonly the combinationandmarginalizationoperators, and theLauritzen–

Spiegelhalter architecture [20] that uses the combination, marginalization, and removal operators. The main focus of VBS is

to enable local computation of marginals of the joint valuation.

The VBS framework has been expanded, and studied further in greater mathematical depth. Shafer [27] provides an

axiomatic treatment of conditionals called continuers, which are defined without explicit reference to a removal operator.

Lauritzen and Jensen [20] describe an alternative axiomatization of the removal operator. Kohlas [17] studies VBS using

abstract algebra, and also studies a class of VBS (called information algebras) where the valuations are idempotent. Kohlas

and Wilson [18] link VBS to the algebraic theory of semirings. Finally, Pouly and Kohlas [24] describe local computation in

VBS in great detail, including different architectures, and normalization, and provide many examples of domains that fit in

the VBS framework.

In a Bayesian networkmodel, one usually starts with a specification of the joint probability distribution that is factorized

into conditionals for each variable given a subset of variables. The joint probability distribution is then obtained as the

combination of all the conditionals, i.e., a fundamental assumption of a Bayesian network model is that there is no double-

counting of knowledge in combining all conditionals to form the joint distribution. In a compositional model, one starts

from a different starting point. One starts with a set of marginal probability distributions, where each marginal distribution

is for some subset of variables. We cannot combine the marginal distributions as this would lead to double counting of

knowledge (for those variables that are in the intersections of subsets of variables for which we havemarginals). This is why

we use the composition operator because it allows us to aggregate knowledge in the marginal distributions without double

counting of knowledge. We assume that each variable is included in some subset for which we have marginals. This goal

can also be reached by the iterative proportional fitting procedure (IPFP) [5]. The IPFP solution is obtained by an iterative

procedure of high computational complexity, where at each step I-projections ofmultidimensional probability distributions

are computed. To substantially decrease the computational complexity of this process, Perez proposed an approximate

solution [23] based on his idea of dependence structure simplifications. The approximation consists in the fact that not all

marginals from the given set are taken into consideration.

Anotherpopularmethod for representing complexmodels fromsets ofmarginal distributions andadependence structure

is the method based on Sklar’s copulas [36]. But while it is computationally difficult to apply copulas to problems of more

than 10 variables, IPFP (especially when using its decomposable representation) can be applied to problems of several tens

of variables. Perez’s approximation and compositional models can be applied to problems with hundreds of variables.

The goal of this paper is to describe compositional models in the general framework of VBS. The composition operator,

which is the central operator of compositional models, was first introduced in probability theory to compare Csiszár’s I-

projections [4] and Perez’s dependence structure simplifications [23], and to make it easier to understand the differences

between these two concepts. Soon after, the composition operator was used to introduce compositional models, as an

alternative to Bayesian networks, in the framework of discrete probability theory [10,11]. These models were later extended

in [40] for possibility theory, and in [16] for belief functions in the D–S belief function theory.

In this paper, we use the VBS framework [34] to extend compositional models to all uncertainty calculi captured by

the VBS framework, which includes calculi such as probability theory, a version of possibility theory with the product t-

norm, Spohn’s epistemic belief theory, and D–S belief function theory. We define a composition operator for valuations, and

notice that conditional valuations can be described using the composition operator. Next, we define a class of compositional

models called decomposable models, and for this class of models, we describe how conditioning can be done using local

computation.

As the VBS framework includes the D–S theory of belief function, we have implicitly defined a compositional model for

the D–S theory. We compare this compositional model with the one defined in [16] for belief functions. The two models

are different. The compositional model described in [16] can be described in the VBS framework, but with a combination

operator that is different from Dempster’s rule of combination. Thus, the compositional model described in [16] is not for

the D–S belief function theory that necessarily entails Dempster’s rule of combination, but for an alternative belief function

theory with the new rule of combination.

For the D–S belief function theory, if we remove a basic probability assignment (BPA) from another BPA, the resulting

functionmay not be a BPA as the probability masses can be negative. This is true even if the BPA being removed is amarginal

of the BPA it is being removed from. In this paper, we define a class of belief function models, called graphical belief, such

that if we remove a BPA from another, the result is always a BPA.

We compare the VBS compositional model with the one described in [40] for possibility theory. The VBS framework

capturesonly theversionofpossibility theorywhere thecombination rule is theproduct t-norm. For this versionofpossibility

theory, the two compositional models coincide. For the other versions of possibility theory, the combination rules (non-

product t-norms) do not satisfy the axioms that the VBS operators are required to satisfy. Thus the applications of the local

computation algorithms, such as the Shenoy-Shafer architecture [35] or the Lauritzen-Spiegelhalter architecture [20], are
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