
Information Systems 33 (2008) 182–202

Toward microbenchmarking XQuery

Philippe Michielsa, Ioana Manolescub,�, Cédric Miachonc

aUniversity of Antwerp, Belgium
bINRIA Futurs, France

cLRI—Université Paris-Sud 11, France

Abstract

A substantial part of the database research field focusses on optimizing XQuery evaluation. However, there is a lack of

tools allowing to easily compare different implementations of isolated language features. This implies that there is no

overview of which engines perform best at certain XQuery aspects, which in turn makes it hard to pick a reference platform

for an objective comparison. This paper is the first to give an overview of a large subset of the open source XQuery

implementations in terms of performance. Several specific XQuery features are tested for each engine on the same

hardware to give an impression of the strengths and weaknesses of that implementation. This paper aims at guiding

implementors in benchmarking and improving their products.

r 2007 Elsevier B.V. All rights reserved.

Keywords: XML; Query; XQuery; Benchmark; Microbenchmark; Performance

1. Introduction

In the recent past, a lot of energy has been spent on
optimizing XML querying. This resulted in many
implementations of the corresponding specifications,
notably XQuery and XPath. Usually, little time and
space is spent on thorough measurements across
different implementations. This complicates the task
of implementors to compare their implementations to
the state-of-the-art technology, since no one really
knows what system actually represents it.

As is pointed out in [1], there are two possible
approaches for comparing systems using benchmarks.
Application benchmarks like XMark [2], XMach-1 [3],
X007 [4] and XBench [5] are used to evaluate the
overall performance of a database system by testing as

many query language features as possible, using only a
limited set of queries. As such, these kinds of bench-
marks are not very useful for XPath/XQuery imple-
mentors, since they are mainly interested in isolated
aspects of an implementation that need improvement.

Micro-benchmarks, on the other hand, are designed
to verify the performance of isolated features of a
system.We believe that microbenchmarks are crucial in
order to get a good understanding of an implementa-
tion. Moreover, it rarely happens that one platform is
the fastest on all aspects. Only microbenchmarks can
reveal which implementation performs best for isolated
features. Our focus is to benchmark a set of important
XQuery constructs that form the foundation of the
language and thus greatly impact the overall query
engine performance. These features are:

� XPath navigation
� XPath predicates (including positional predicates)

ARTICLE IN PRESS

www.elsevier.com/locate/infosys

0306-4379/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2007.05.003

�Corresponding author.

E-mail address: Ioana.Manolescu@inria.fr (I. Manolescu).

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2007.05.003
mailto:loana.manolescu@inria.fr


� XQuery FLWORs
� XQuery node construction.

The selected XQuery processors are chosen to
represent both in-memory and disk-based imple-
mentations of the language.

We hope to continue this effort using automated
tools such as XCheck [6,7]. This continuation
involves the population of a repository with a large
amount of ready-made micro-benchmarks as well as
the benchmarking of many more platforms. We
hope that this work can guide XQuery implemen-
tors to improve their products based on objective,
thorough and relevant measurements.

Limitations: We take the view that detailed
performance measures should document as much
as possible the times spent by an XQuery processing
engine in each stage of query evaluation—for
instance, separating query optimization from query
execution and from the XML result serialization
time. From our experience, in the case of large-
result queries, the serialization time can easily
dominate the other evaluation times (sometimes by
orders of magnitude)! Unfortunately, some engines
do not provide a means to isolate the serialization
time from the other execution components, e.g.
when execution is streamed. Therefore, we have
decided to measure the time to run each query as
such, and then the time simply counts the query

results, with the hope that the latter time is a

reasonable approximation of the time to run the

query without serializing the result.
We are aware of two possible problems of this

approach. First, a very simplistic implementation
may serialize the results and then count them, thus
including, against our will, the serialization time in
the counting query running time. Second, a
sophisticated implementation may answer counting
queries from some data statistics, e.g. histograms or
indexes, without actually accessing the data. In this
case, the execution time is incomparable with the
time to run the simple query, without the count.
Despite these shortcomings, we found the count-
ing queries useful in practice as a means to
approximate the otherwise inaccessible XML serial-
ization time.

2. Settings

In this section, we present the documents (Section
2.1) and queries (Sections 2.2 and 2.4) used for the
performance measures in this paper, as well as the

rationale for choosing them. Section 2.5 describes
our hardware and software environment, and the
system versions used.

All documents, queries, settings and (links to)
the systems used in these measures can be found
at [8].

2.1. Documents

In order to have full control over the parameters
characterizing our documents, we used synthetic
ones, generated by the MemBeR project’s XML
document generator [1,9]. MemBeR-generated
documents consist of simple XML elements, whose
element names and tree structure are controlled by
the generator’s user. Each element has a single
attribute called @id, whose value is the element’s
positional order in the document. The elements
have no text children.

Some of the systems we tested are based on a
persistent store, while the others run completely in
memory. While we are aware of the inherent
limitations that an in-memory system encounters,
we believe it is interesting to include both classes of
systems in our comparison, since performant
techniques have been developed independently on
both sides, and the research community can learn
interesting lessons from both. To enable uniform
testing of all systems, we settled for moderate-sized
documents of about 11MB, which most systems can
handle well. As such, the stress testing of the
systems below has a focus on query scalability,
rather than data scalability.

To these documents, we added a family of 10
more documents of varying size, going from 100,000
nodes to 1,000,000 nodes. The purpose of this last
document family was to enable an analysis in the
way query engines process path queries. The
interesting feature of such queries is that a naive
implementation requires sorting and duplicate
elimination to be performed after each XPath step,
whereas efficient engines are able to avoid it. Our 10
chosen documents allow tracing the data scalability
of an engine on path queries, which in turns allows
some inferences about the engine’s inner workings.

The document structures are outlined in Fig. 1. In
this figure, white nodes represent elements, whose
names range from t1 to t19; dark nodes represent
@id attributes. The exponential2.xml, layered.xml
and mixed.xml documents have a depth of 19, which
we chose so that complex navigation can be stu-
died, and in accordance with the average-to-high

ARTICLE IN PRESS
P. Michiels et al. / Information Systems 33 (2008) 182–202 183



Download English Version:

https://daneshyari.com/en/article/397048

Download Persian Version:

https://daneshyari.com/article/397048

Daneshyari.com

https://daneshyari.com/en/article/397048
https://daneshyari.com/article/397048
https://daneshyari.com

