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In this paper, parametric regression analyses including both linear and nonlinear regressions

are investigated in the case of imprecise and uncertain data, represented by a fuzzy belief

function. The parameters in both the linear and nonlinear regression models are estimated

using the fuzzy evidential EM algorithm, a straightforward fuzzy version of the evidential

EM algorithm. The nonlinear regression model is derived by introducing a kernel function

into the proposed linear regression model. An unreliable sensor experiment is designed

to evaluate the performance of the proposed linear and nonlinear parametric regression

methods, called parametric evidential regression (PEVREG) models. The experimental results

demonstrate the high prediction accuracy of the PEVREG models in regressions with crisp

inputs and a fuzzy belief function as output.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Supervised learning is concerned with the prediction of a response (i.e., the output variable) based on a learning set

{(ui, xi)|i = 1 to n}, whereu is a vector of p input variables and x is the response. This problem is also referred to as regression

when the output is a quantitative measurement. Regression analysis is one of themost popular statistical techniques for the

identification of a functional relationship between the input variables and response. Many techniques have been proposed

in the literature to estimate the regression function, including nearest-neighbor methods, smoothing splines, multi-layer

perceptions, radial basis function networks, and projection pursuit methods (see, e.g., [19]). These methods have proven

very efficient in a wide range of applications, but they also suffer from certain limitations.

Classical regression techniques [2,19,22] assume perfect knowledge of the value of the response x for a given learning

sample. That is to say, the observations are assumed to be both precise and certain. However, in many real-life situations,

we cannot obtain such ideal observations. The information about the response is often obtained usingmeasuring devices, or

sensors, with limited precision and reliability. The imprecise observations of the response may then be modeled better by

real intervals [x−i , x+i ] or (triangular) fuzzy numbers Ãi with core xi. Several approaches have been proposed for processing

such learning data, such as linear fuzzy regression models [3,18,34] and fuzzy [33,38] or neuro-fuzzy inference systems

[20]. However, the uncertainty in the observations is not easily accounted for in these approaches. For instance, there is

always uncertainty in cases of poor sensor reliability. An observationmay be imprecise, uncertain, or both, and each of these

situations must be properly represented in a learning system [17,28].

To address this issue, Petit-Renaud and Denoeux [23] first proposed a new approach to regression analysis based on fuzzy

belief function theory, which they termed evidential regression (EVREG) modeling. The basic idea of EVREG modeling is that
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each training sample in the neighborhood of the input vector u is viewed as a piece of evidence regarding the value of the

output x, and the evidence items are discounted as a function of their distance to u and combined using the conjunctive rule

of combination (the unnormalized Dempster’s rule). The result is a fuzzy belief assignment that quantifies the distribution

of beliefs concerning the value of x. The EVREGmethod is therefore a naturally nonparametric regressionmodel, which leads

to some desirable properties – for instance, the output of EVREG reflects not only the quality of the training data but also

the relevance of these data to the prediction task at hand.

Therehasbeena recent surgeof interest inuncertaindatamining (see, e.g., [10,12,13,15,16,31]). A significant contribution

to this field was the extension of the Expectation–Maximization (EM) algorithm [9] to uncertain data in the form of the so-

called evidential EM (E2M) algorithm proposed by Denoeux [12,13]. This algorithm permits estimation of the parameters

of statistical models in cases where the data are uncertain and represented by a (crisp) belief function. Denoeux’s work

provides an opportunity to study parametric regression, including both linear and nonlinear regressions, in cases where

only imprecise and uncertain data are available. In this paper, we apply Denoeux’s E2M algorithm to fuzzy belief functions

and provide a straightforward presentation of the fuzzy version of the E2M algorithm (the Fuzzy E2M algorithm or FE2M).

Through the FE2M algorithm, we introduce a new approach to regression analysis, called the parametric evidential regression

model (PEVREG). Unlike EVREG, the new PEVREG approach is naturally parametric.

The paper is organized as follows. As background for the remainder of the paper, Section 2 provides a brief overview of

fuzzy belief function theory. In Section 3, traditional likelihood methods and the E2M algorithm are applied to fuzzy belief

functions. Section 4 investigates the PEVREGmodel in the fuzzy belief function framework. Section 5 presents an unreliable

sensor experiment designed to demonstrate the performance of PEVREG, and the paper is concluded in the final section.

2. Fuzzy belief function theory

In this section, belief function theory and its fuzzy extension [7,8,25,27,30] are briefly introduced as background for

the remainder of the paper. Section 2.1 reviews the basic concepts, and Section 2.2 introduces the notion of cognitive

independence.

2.1. Basic concepts

Let� = {ω1, ω2, . . . , ωc}, the frame of discernment, be a collectively exhaustive andmutually exclusive set of c hypothe-

ses or propositions. A basic belief assignment (BBA, or mass function) is a functionm: 2�→ [0, 1], satisfying:∑
A⊆�

m(A) = 1. (1)

A BBA is considered to be normal ifm(φ) = 0; otherwise it is subnormal. Any subset A of� such thatm(A) > 0 is called

a focal element of m. For two given BBAs m1 and m2 representing two independent sources of evidence and any binary set

operation∇ , the fusion of the two BBAs, denoted by m = m1©�m2, may be defined as follows:

m(C) = ∑
A∇B=C

m1(A)m2(B). (2)

The conjunctive rule is obtainedwhen∇ = ∩, and thedisjunctive rule is obtainedwhen∇ = ∪. Note that the conjunctive
rule may produce a subnormal belief assignment. The Dempster rule,⊕, converts the subnormal BBA into a normal one,m∗,
defined for A 	= φ andm∗(φ) = 0 as follows:

m∗(A) = m(A)

1− m(φ)
. (3)

Two evidential functions derived from the BBA are the belief function, Bel, and the plausibility function, Pl, defined for all

A in� as:

Bel(A) = ∑
φ 	=B⊆A

m(B), (4)

Pl(A) = ∑
A∩B 	=φ

m(B). (5)

These two functions are connected by the relation Pl(A) = 1 − Bel(A) for all A ⊆ �. The function pl: �→ [0, 1] such
that pl(ω) = Pl({ω}) is called the contour function associated with m. If m is Bayesian, we have pl(ω) = m({ω}). In this

case, pl is a probability distribution. A probability distribution P is said to be compatible with m if Bel(A) ≤ P(A) ≤ Pl(A)
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