
Determining serialization order for serializable snapshot
isolation

Elizabeth J. O'Neil n, Patrick E. O'Neil
Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA

a r t i c l e i n f o

Article history:
Received 8 January 2015
Received in revised form
4 January 2016
Accepted 4 February 2016
Available online 13 February 2016

Keywords:
Database management
Snapshot isolation
Serializability
Concurrency control
Time travel query
Timestamp

a b s t r a c t

Snapshot Isolation (SI) is in wide use by database systems but does not guarantee seri-
alizability. Serializable snapshot isolation (SSI) was defined in 2008 by Cahill, Röhm, and
Fekete in Ref. [1] and an enhanced version that we call ESSI was defined in 2009 by the
same authors [2]. Both guarantee serializable execution by aborting transactions that
might be involved in anomalies, but occasional transactions are aborted unnecessarily.
The resulting commit order is often different from the serialization order and this can
confuse bank auditors, for example. In this paper we show how to determine the
proper serialization order of these transactions and store this information for later access.
With this known serialization order the database system can perform time-travel queries
to capture snapshots of consistent database states in the past. Our algorithm assigns to
each SSI or ESSI transaction at its commit time an appropriate serialization order time-
stamp that falls within the transaction lifetime, i.e., between its start-time and commit-
time. The algorithm uses only information already gathered by the algorithm imple-
menting ESSI in [2].

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Snapshot isolation (SI) was originally defined in [3], where
its lack of serializability was discussed, as well as its significant
advantages that readers do not block writers and writers do
not block readers. It is now in use in Oracle and Microsoft SQL
Server, and Postgres (before version 9.1) among others. Seri-
alizable snapshot isolation (SSI) is defined in [1] and Enhanced
SSI (here abbreviated ESSI) in [2]. These both provide serial-
izable isolation, and are the main subject of our results. The
open-source database Postgres starting with version
9.1 implements ESSI for its serializable isolation level [4], with
an additional optimization for read-only transactions. Another
closely related form of serializable SI is Precisely Serializable
Snapshot Isolation (PSSI) defined in [5]. In SSI, ESSI, and PSSI,

reads are handled as in SI, that is, a transaction reads the latest
committed version of a row that existed at its own start time.
Writes are also handled as in SI, that is, transactions are
aborted to ensure that no two concurrent transactions write
the same data. Inwhat follows wewill refer to "The SI Family"
with "members" from the set {SI, PSSI, ESSI, SSI}, listed here in
order of increasing number of aborts to ensure serializability,
starting from zero for SI.

Any serializable scheduler guarantees the existence of a
serialization order for committed transactions, that is, the
order of transactions in some conflict-equivalent serial
execution. In strict 2PL, the serialization order is simply the
commit order. In SSI, ESSI, and PSSI the serialization order is
not always the commit order, as shown by Example 1 below.

Example 1. Serialization order can differ from commit
order in SSI, ESSI, and PSSI

Consider the execution shown in the schedule and
temporal diagram of Fig. 1 below. An antidependency is

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.02.001
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ1 617 354 6460.
E-mail addresses: eoneil@cs.umb.edu (E.J. O'Neil),

poneil@cs.umb.edu (P.E. O'Neil).

Information Systems 58 (2016) 14–23

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.02.001
http://dx.doi.org/10.1016/j.is.2016.02.001
http://dx.doi.org/10.1016/j.is.2016.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.001&domain=pdf
mailto:eoneil@cs.umb.edu
mailto:poneil@cs.umb.edu
http://dx.doi.org/10.1016/j.is.2016.02.001


depicted with a dashed arrow, following [1] and [2]. The
transaction starts with the begin (B) operation. The seri-
alization order is T1 T2 because of the R–W conflict from T1
to T2 (R1(X) and W2(X)), where T2 overwrites the X value
accessed by T1. We call this R–W conflict an "item anti-
dependency" (Definition 2).

The serialization order is not always obvious in SSI, ESSI
and PSSI, so the natural question is how we can efficiently
determine that order. The main result of this paper is an
algorithm for determining the serialization order position
of each transaction running under ESSI or SSI (but not
PSSI) at its commit time. It is practical in the sense that it
only uses information that ESSI already uses to implement
its read, write and commit operations. We can also do this
determination with SSI, but must then use some of ESSI's
capabilities. See Section 5. In Section 4.1, we show how
PSSI’s allowed behavior eludes our treatment.

The organization of this paper is as follows. In Section 2
we define the needed concepts of snapshot isolation,
characterize the three serializable SI methods, and show
elementary results about serialization orders. In Section 3
we will prove the main result of the paper, an algorithm to
assign a Serialization Timestamp to each ESSI or SSI
transaction at its commit time. Serialization Timestamps
provide by their numerical order a serialization ordering
for the transactions. In Section 4 we will provide further
related results, including what can happen in non-ESSI
histories such as PSSI histories. Section 5 briefly discusses
implementation of Serialization Timestamps. Section 6
discusses related work.

2. Background

We assume that database timestamps (e.g., for trans-
action start and commit times) are provided by a central
facility to provide a system-wide time. In most systems,
this facility provides unique times on each access to it. We
will assume that all start times and commit times are
unique for ease of presentation. In fact, it is possible to
extend this analysis to include the cases where the start
time of one transaction can equal the commit time of
another transaction, and two commit times can be equal,
but in this extended case more transactions are aborted.
See Section 3.3 for details. Since start and commit times
are unique, concurrent transactions cannot overlap at just
one point in time, but rather have non-trivial overlaps in
time.

Definition 1. SI Reads and Writes. In all members of the SI
Family, a read by Tj finds the last committed version of a
selected data item prior to the start time of Tj. The set of

versions of data, each of which is the last committed ver-
sion before Tj’s start time, is called the snapshot from
which Tj is reading. In write actions, the SI Family uses a
rule that ensures that writes by two concurrent transac-
tions never update the same data item. One such rule is
first-committer-wins, which specifies that if multiple con-
current transactions update the same data item, the first
one to commit succeeds, and other transactions abort.
Alternatively, some systems (such as Oracle) use first-
updater-wins, a rule that if multiple concurrent transac-
tions update the same data item, the first update is suc-
cessful, and other transactions abort, after waiting for the
first updater to commit.

Definition 1 implies that a transaction never reads a
version written by a concurrent transaction. Data depen-
dencies between transactions can be direct dependencies,
meaning W–R or W–W dependencies, or antidependencies,
which are the R–W dependencies, as detailed in Definition
2. Of these, the antidependencies are the important ones
to track in SSI and ESSI and for our work on serialization
ordering for these isolation methods.

Definition 2. An antidependency is a R–W dependency
between two transactions, either an item or predicate
antidependency, defined as follows for all members of the
SI family. An item antidependency consists of a read of
some data item x by transaction Ti and a write of x by a
transaction Tk that creates a version of x after the version
read by Ti. (See Example 1 above and Example 2 below.) A
predicate antidependency occurs when there is a predicate
read by Ti and a write by Tk of some data item x, where the
version of x written by Tk was not accessed by Ti but
changes the result of the predicate read by Ti. (See Example 3
below.)

As in [6], we symbolize an antidependency by –-, an
arrow with dashes in its shaft. Note that although it is con-
ventional to call an antidependency a “R–W” dependency, in
SI family executions the write operation may precede the
read operation in time, as shown by Example 2. Since the
operation R1(X) reads the snapshot as of transaction-start, it
is effectively moved back in time to before the write
operation.

Example 2. Fig. 2. shows an item antidependency with
the write executing first.

In Fig. 2, R1(X) reads from the snapshot that corresponds
to the transaction start at B1, that is, the database state before
W 2(X) occurs. Thus even though R1(X) follows W2(X) in real
time, there is an antidependency from T1 to T2 here, which
creates an ordering requirement (T1 before T2).

Fig. 1. Example 1, showing Serialization Order T1 T2 opposite to Commit order T2 T1.

E.J. O'Neil, P.E. O'Neil / Information Systems 58 (2016) 14–23 15



Download English Version:

https://daneshyari.com/en/article/397227

Download Persian Version:

https://daneshyari.com/article/397227

Daneshyari.com

https://daneshyari.com/en/article/397227
https://daneshyari.com/article/397227
https://daneshyari.com

