
A fully persistent and consistent read/write cache
using flash-based general SSDs for desktop workloads

Sung Hoon Baek a, Ki-Woong Park b,n

a Department of Computer System Engineering, Jungwon University, Republic of Korea
b Department of Computer Hacking and Information Security, Daejeon University, Republic of Korea

a r t i c l e i n f o

Article history:
Received 6 April 2015
Received in revised form
10 December 2015
Accepted 4 February 2016
Recommended by: B. Kemme
Available online 12 February 2016

Keywords:
Secondary storage

a b s t r a c t

The flash-based SSD is used as a tiered cache between RAM and HDD. Conventional
schemes do not utilize the nonvolatile feature of SSD and cannot cache write requests.
Writes are a significant, or often dominant, fraction of storage workloads. To cache write
requests, the SSD cache should persistently and consistently manage its data and metadata,
and guarantee no data loss even after a crash. Persistent cache management may require
frequent metadata changes and causes high overhead. Some researchers insist that a
nonvolatile persistent cache requires new additional primitives that are not supported by
general SSDs in the market. We proposed a fully persistent read/write cache, which
improves both read and write performance, does not require any special primitive, has a
low overhead, guarantees the integrity of the cache metadata and the consistency of the
cached data, even during a crash or power failure, and is able to recover the flash cache
quickly without any data loss. We implemented the persistent read/write cache as a block
device driver in Linux. Our scheme aims at virtual desktop infra servers. So the evaluation
was performed with massive, real desktop traces of five users for ten days. The evaluation
shows that our scheme outperforms an LRU version of SSD cache by 50% and the read-only
version of our scheme by 37%, on average, for all experiments. This paper describes most of
the parts of our scheme in detail. Detailed pseudo-codes are included in the Appendix.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The advent of flash-based solid-state drive (SSD) has
spurred a proliferation of studies on new storage archi-
tectures. Flash memory is widely used in mobile phones
and embedded systems because it is smaller and more
resistant to shock than mechanical storage devices such as
hard disk drives (HDD). In addition, SSD that utilizes tens
or hundreds of independent flash chips is superior to HDD
in terms of bandwidth and response time. Thus, SSD has

been replacing HDD in devices ranging from desktop
computers to enterprise servers.

The capacity per price of SSD is greater than that of
RAM and lower than that of HDD. In the aspect of per-
formance, SSD is slower than RAM but faster than HDD.
Especially, HDD exhibits much longer latency for non-
sequential requests than SSD due to its mechanical com-
ponents, while SSD provides a short constant response
time regardless of request patterns.

In terms of the performance, the capacity, and the
price, SSD is in between RAM and HDD. Hence, various
tiered architectures where SSD is used as a second level
cache between RAM and HDD have been studied [1,2].

Many researchers have studied the nonvolatile memory
(NVRAM) such as phase-change memory and magnetoresistive

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.02.002
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
Tel.: þ82 10 9165 1624; fax: þ82 42 280 2404.

E-mail addresses: shbaek@jwu.ac.kr (S.H. Baek),
woongbak@dju.kr (K.-W. Park).

Information Systems 58 (2016) 24–42

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.02.002
http://dx.doi.org/10.1016/j.is.2016.02.002
http://dx.doi.org/10.1016/j.is.2016.02.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.002&domain=pdf
mailto:shbaek@jwu.ac.kr
mailto:woongbak@dju.kr
http://dx.doi.org/10.1016/j.is.2016.02.002


RAM as an intermediate tier between RAM and HDD [3–6]. The
byte-addressing feature of NVRAM makes persistent cache
management easy but SSD is not byte-addressable. SSD, how-
ever, is superior to NVRAM in terms of performance per price
and has been used as a cache below RAM in commercial sto-
rage systems [7–9].

Approaches to use the raw flash memory as a tiered
cache have been introduced [10,11]. Consequences of the
drive to lower the price and increase the capacity of flash
memory, have been that the reliability of flash cells con-
tinues to diminish and a variety of error patterns has arisen.
The flash architecture turned into 3D NAND from planar
NAND [12], and its error types greatly changed. The man-
ufacturers have investigated various solutions for these
errors and keep them secret for market advantage. It is
difficult for a third party company to manage the low-level
flash memory. However, SSD provides us an error-free
interface; thus, it can easily be managed as a tiered cache.

Many studies on databases that use flash SSDs as a mid-
tier cache have been carried out [13–15]. Canim et al.
introduced a read cache replacement algorithm that esti-
mates I/O costs between SSD and HDD for each region to
determine which region is best to be promoted to SSD [14].
Do et al. showed that a write cache can give a significant
gain to database systems [15]. However, a cache metadata
management scheme that has no data staleness is needed
for database systems to adopt a write cache.

1.1. Persistency and consistency

The conventional second-level cache schemes for flash-
based SSDs are variations of traditional RAM-based cache
policies. Hence, they do not utilize the nonvolatile feature
of SSD. Cached data in SSD cannot be used at the next
restart because they store metadata in RAM for fast pro-
cessing. Data stored in SSD does not volatilize but the data
cannot be used after a restart because the metadata in
RAM is lost and we cannot know which sector the cached
data is related to [1,2,8,16–18].

The capacity of SSD as the second level cache is much
bigger than the main memory by two or three orders of
magnitude. The conventional second cache schemes ignore all
data stored in SSD at a restart and require too long time until
the SSD cache is filled with data at the rate of application I/O.
This process takes several hours or even days to fill the SSD.

A warm-start scheme was proposed [19] that would
shorten the restart time of the storage-class second level
cache. It makes a log of warmup data to fill the second level
cache at the next boot time. However, this scheme still
requires at least several hours to fill the storage-class cache.

A cache is persistent if its cache data is immediately
reusable after a power failure. The proposed system is
persistent, does not need a warming process, and has a
low overhead. The cache metadata and data are stored in a
nonvolatile device such as SSD and is consistent without
data loss even after a crash or a power failure.

1.2. Write cache and overhead

“Writes are significant, or often dominant, fraction of
storage workloads” [20–23], thus, a write cache can greatly

improve the write performance. The traditional caches do
not safely manage their cache metadata during a crash, so
they cache only read requests and cannot retain dirty data,
even though the cache device is nonvolatile.

Most tiered cache technologies use a write-through
policy that prohibits dirty data in SSD. In other words, a
write request invalidates a block that is cached in SSD and
is directly delivered to HDD, thus all the newest data are
stored in HDD. This means that conventional technologies
utilize SSD as a read-only cache that cannot improve the
write performance.

Even though SSD is a nonvolatile device, it is very dif-
ficult to apply the write-back policy to the tiered cache. To
persistently maintain dirty data in SSD, cache metadata
must be stored in a nonvolatile device and consistently
updated whenever a block is evicted or cached. In addi-
tion, cached data and cache metadata must not be lost and
be consistent even at a crash. A persistent cache that
employs dirty data may require a high real-time overhead
for consistent metadata management.

A persistent read/write cache improves both read and
write performance but it must also guarantee the integrity
of the cache metadata and the consistency of the cached
data even during a crash or a power failure.

Saxena et al. [24] proposed a durable (same as persis-
tent) write cache with a small overhead. They insisted that
storage provide new primitives (write-dirty, write-clean,
evict, clean, exists) to consistently manage a write cache
with a low overhead. However, general SSDs, though they
support only the basic primitives, read and write; have the
benefits of fast development time, low cost, and popularity.

An approach using general SSDs was introduced [25]. It
can cache write data and does not return stale data but
may restart with an empty cache if a crash occurred while
updating its cache metadata.

The system proposed herein is a fully persistent read/
write cache with low overhead, it never return stale data,
and it utilizes general SSDs that are now available in the
retail market.

1.3. Lossless recovery and no-write-back

Koller et al. [20] introduced a write-back policy for an
SSD cache, which is journaled write-back that makes a
block-level journal that aggregates multiple write requests
with a header block and a commit block, while limiting the
amount of data loss. The journaling cache quickly recovers
by replaying the last completed transaction to its home
location. However, it cannot provide a recovery point
objective (RPO) of zero (i.e., no data loss). It loses the last
journaled data if a crash occurs in the middle of journaling.

Holland et al. [26] investigated flash write policies,
which are write-through, asynchronous write-through,
and periodic write-back. The write-through policy does
not permit dirty data on flash. The other write policies
may return stale data after a crash or a power failure. Some
SSD caches use the write-back policy for the write per-
formance by sacrificing a risk of data loss [8,23,27]. How-
ever, our solution never loses dirty data for highly available
systems.

S.H. Baek, K.-W. Park / Information Systems 58 (2016) 24–42 25



Download English Version:

https://daneshyari.com/en/article/397228

Download Persian Version:

https://daneshyari.com/article/397228

Daneshyari.com

https://daneshyari.com/en/article/397228
https://daneshyari.com/article/397228
https://daneshyari.com

