
PaMeCo join: A parallel main memory compact hash join

Steven Begley n, Zhen He, Yi-Ping Phoebe Chen
Department of Computer Science and Information Technology, La Trobe University, VIC 3086, Australia

a r t i c l e i n f o

Article history:
Received 31 August 2015
Accepted 5 October 2015
Recommended by: Philippe Bonnet
Available online 6 November 2015

Keywords:
In-memory databases
Hash join
Memory constrained
OLAP
Column store

a b s t r a c t

This paper presents a memory-constrained hash join algorithm (PaMeCo Join) designed to
operate with main-memory column-store database systems. Whilst RAM has become
more affordable and the popularity of main-memory database systems continues to grow,
we recognize that RAM is a finite resource and that database systems rarely have an
excess of memory available to them. Therefore, we design PaMeCo to operate within an
arbitrary memory limitation by processing the input relations by parts, and by using a
compact hash table that represents the contained tuples in a compact format. Coupled
with a radix-clustering system that lowers memory latencies, we find that PaMeCo can
offer competitive performance levels to other contemporary hash join algorithms in an
unconstrained environment, while being up to three times faster than a high-performing
hash join when memory constraints are applied.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Column-store databases remain a hot topic for database
researchers, with existing systems (e.g. [1–4]) showing
desirable performance characteristics in scenarios such as
online analytical processing (OLAP), which encompasses
fields such as business analytics, marketing, budgeting,
financial reporting, and other business intelligence sys-
tems. Column-store systems are also making inroads into
other domains previously considered as weak points for
column-store systems, such as online transaction proces-
sing (OLTP) [5]. We find most column-store systems being
tailored for running as main memory database systems
(due to the present-day affordability of RAM), avoiding the
latencies associated with secondary storage systems. This
has led to researchers to look at new ways of optimizing
database algorithms to be better suited to running in a
main memory scenario.

The relational join, being one of the most important
database operators, can also be one of the most processor
and memory resource intensive operations. A popular
approach to performing hash join operations on main
memory column-store databases is through the use of the
radix-cluster algorithm [1], due to its ability to overcome
memory access stalls by using cache-friendly data struc-
tures. However, many existing join algorithms make an
assumption that there is an unlimited reserve of tempor-
ary memory available, which can prove problematic
in situations where there is insufficient free temporary
memory to fully build the input relations into hash
tables (or other data structures) during the join operation.
For example, the radix join (a hash join utilizing the radix-
cluster algorithm) partitions and builds the input relations
before executing the join phase, therefore needing tem-
porary memory at least the size of the input relations
themselves. To compound this situation, a database system
may perform multiple queries simultaneously, and thereby
requiring their aggregate memory space. When main
memory is exhausted the virtual memory system pages
data to disk, significantly lowering the performance of the
join operation.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.10.004
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: skbegley@students.latrobe.edu.au (S. Begley),

z.he@latrobe.edu.au (Z. He), phoebe.chen@latrobe.edu.au (Y.-P. Chen).

Information Systems 58 (2016) 105–125

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.10.004
http://dx.doi.org/10.1016/j.is.2015.10.004
http://dx.doi.org/10.1016/j.is.2015.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.004&domain=pdf
mailto:skbegley@students.latrobe.edu.au
mailto:z.he@latrobe.edu.au
mailto:phoebe.chen@latrobe.edu.au
http://dx.doi.org/10.1016/j.is.2015.10.004

An existing join algorithm that requires virtually no
temporary memory resources is the nested loop join,
which compares every tuple in the outer relation with
every tuple in the inner relation. However, unlike the hash
join, the nested loop join does not attempt to prune the
number of comparisons, and therefore typically gives poor
performance when workloads are not small. Ideally, we
desire a join algorithm that can offer the performance
benefits of a hash join, but with the ability to constrain the
temporary memory overheads as needed, even to a level
approaching that of the nested loops join.

Fig. 1 shows the performance achieved by the Parallel
Memory Constrained Join (PaMeCo Join) proposed by this
paper. It demonstrates that PaMeCo can achieve perfor-
mance similar to the ideal mentioned above, namely being
able to largely retain the performance of the hash join with
very tight memory constraints. Even at a low memory
limit of 16 MB (approx. 7% of the temporary memory
needed by the hash join in this example), PaMeCo out-
performs the nested loop join by six orders of magnitude.
In this demonstration both relations had 16 M tuples, and
each tuple is a key/value pair totaling 8 bytes in size.

A simple and intuitive way to impose a memory limit
on the hash join is to process the input relations in blocks
(i.e. consecutive groups of tuples), in a manner similar to
that of a Block Nested Loops join [6] with a hash join
performed between the blocks. However, this approach
leads to an increased total number of hash table building
and comparison operations because one pass through the
entire inner relation is required for each block of the outer
relation.

Our aim is to process larger blocks of the outer relation
while still obeying a memory limitation and retaining the
performance benefits of a hash join. We have achieved this
by designing and implementing the Parallel Memory
Constrained (PaMeCo) join algorithm, a hash join that
utilizes a compact hash table that works within an arbi-
trary memory constraint. The results show that in a
memory constrained environment, PaMeCo can outper-
form a naively memory-constrained version of a hash join
algorithm.

PaMeCo achieves this result as follows. Firstly, during
the build phase, PaMeCo uses compression to reduce the
size of the hash table containing the tuples of the outer
relation, and therefore allowing larger blocks of the outer

relation to be stored in temporary memory. This leads to
fewer passes through the inner relation, thereby reducing
the overall join cost. The compression algorithm exploits
the nature of the hash table process itself to get the
compression and decompression for very little overhead.

Secondly, PaMeCo uses a radix-clustering system that
can operate within a limited memory space, which helps
to avoid some of the cache miss latencies that can occur
during the build and probe phases of the join process.

Thirdly, like some other hash join algorithms [7,8],
PaMeCo employs a histogram to manage the building of
the hash table. PaMeCo improves upon the efficiency of
this histogram by allocating the memory just once during
the join process, and reusing the space allocated for the
histogram for multiple purposes.

Finally, PaMeCo takes advantage of the multi-cored
topology that is typical of current commodity processors
by utilizing thread-level concurrency. It achieves this
functionality whilst remaining mindful of operating within
a given memory constraint. In particular scenarios PaMeCo
can avoid some of the memory and performance over-
heads that may be incurred though multithreading by
providing thread-level concurrency that is free of locking
mechanisms.

The objective of this paper is not to design the fastest
join algorithm in unconstrained memory environments.
Instead, our interest is in how little performance degra-
dation we can incur as the system memory becomes more
constrained. We hope that the core ideas presented in this
paper may be of use to database researchers and com-
plement the development of other join algorithms.

In summary this paper makes the following key
contributions:

1. Identifies the importance of making join algorithms for
main memory databases memory constrained. This is in
contrast to most existing literature for main memory
joins, which assume unlimited available temporary
memory.

2. Proposes a memory constrained join algorithm called
PaMeCo. The algorithm processes the source relations in
a manner similar to a block nested loops join, but uti-
lizes a compact hash table to maximize the size of the
outer blocks.

3. Proposes a method of parallelizing the shared resources
of the PaMeCo algorithm whilst remaining mindful of
memory constraints and performance burdens. A spe-
cialized case of PaMeCo achieves thread-level concur-
rency without the use of conventional locking
mechanisms.

4. Finally, a detailed empirical study of the performance of
PaMeCo vs. a naively memory-constrained version of a
competitive hash join algorithm (based on the work of
[7]) was conducted. The results show the superiority of
PaMeCo in a variety of situations.

This paper extends the work of our earlier paper [9].
There, we presented the MCJoin algorithm and compared
its performance against a hash join algorithm using single-
threaded workloads in a memory-constrained environ-
ment. In this paper, we examine the challenges of

 0

 1

 2

 3

 4

 5

 162337
 0 1
6

 3
2

 4
8

 6
4

 8
0

 9
6

 1
12

 1
28

 1
44

 1
60

 1
76

 1
92

 2
08

 2
24

 2
40

 2
56

Jo
in

 T
im

e
(s

)

Memory Usage (MB)

PaMeCo
Hash Join

Nested Loop Join

Fig. 1. Join algorithm temporary memory usage and performance
comparison.

S. Begley et al. / Information Systems 58 (2016) 105–125106

Download English Version:

https://daneshyari.com/en/article/397233

Download Persian Version:

https://daneshyari.com/article/397233

Daneshyari.com

https://daneshyari.com/en/article/397233
https://daneshyari.com/article/397233
https://daneshyari.com

