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For decision-theoretic rough sets, a key issue is determining the thresholds for the 
probabilistic rough set model by setting appropriate cost functions. However, it is not easy 
to obtain correct cost functions because of a lack of prior knowledge and few previous 
studies have addressed the determination of learning thresholds and cost functions from 
datasets. In the present study, a multi-objective optimization model is proposed for 
threshold learning. In our model, we integrate an objective function that minimizes the 
decision cost with another that decreases the size of the boundary region. The ranges 
of the thresholds and two types of F_measure are used as constraints. In addition, a 
multi-objective genetic algorithm is employed to obtain the Pareto optimal set. We used 
12 UCI datasets to validate the performance of our method, where the experimental 
results demonstrated the trade-off between the two objectives as well as showing that 
the thresholds obtained by our method were more intuitive than those obtained using 
other methods. The classification abilities of the solutions were improved by the F_measure 
constraints.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Pawlak rough set proposed in the early 1980s [1] has been applied in many research fields such as data mining [2,3]
and machine learning [4,5]. However, the traditional model is too strict to include objects in the approximation regions. 
Thus, probabilistic rough set models were introduced to loosen the extreme membership requirements of the equivalence 
classes in the object set [6]. As a special type of probabilistic rough set model, decision-theoretic rough set (DTRS) models 
[7] can be used to derive several probabilistic rough set models, e.g., the 0.5 probabilistic rough set model [8] and variable 
precision rough set model [9].

Previous research into DTRS models can be summarized briefly as follows. First, a series of studies addressed the exten-
sion of the DTRS model. Yao [10] studied the derivation of other probabilistic rough set models from the DTRS. Liu et al. 
[11] introduced three-way decision discriminant analysis into the DTRS model, while Yao and Zhou [12] introduced naive 
Bayesian classification into DTRSs. Based on the current status of the DTRS model, Yang and Yao [13], Zhou [14], and Li and 
Zhou [15] proposed multi-agent, multi-class, and multi-view DTRS models, respectively, as different DTRS model extensions. 
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Using a Bayesian decision procedure and graded rough set, Li and Xu [16] proposed a new framework for DTRS called the 
double-quantitative-DTRS. By considering the new expression of evaluation information using hesitant fuzzy sets (HFSs), 
Liang and Liu [17] introduced HFSs into DTRSs and explored their decision mechanisms. Other studies have concentrated 
on the methodology of DTRS theory, such as attribute reduction and rule acquisition. In particular, Yao and Zhao [18], Min 
et al. [19], and Jia et al. [20] studied attribute reduction with respect to DTRS theory from different viewpoints. In [18], 
different classification properties, such as coverage, cost, confidence, decision-monotonicity, and generality, were regarded 
as important factors for attribute reduction. In [19], the new problem of minimal test cost reduction was proposed, where 
three metrics for evaluating the performance of the reduction algorithm were defined from a statistical viewpoint. Fur-
thermore, in [20], a new definition was proposed for attribute reduction for DTRS models by formulating an optimization 
problem that aims to minimize the cost of decisions. In addition, Li et al. [21] defined a new attribute reduction method 
based on further investigations of its monotonicity property. Grzymala-Busse et al. [22] analyzed positive and boundary 
regions as well as comparing possible rules using the Modified Learning from Examples Module Version 2 algorithm. Fi-
nally, several studies have considered the application of DTRS models. Thus, Zhou et al. [23] proposed a three-way decision 
method for filtering spam based on a Bayesian decision procedure. Li et al. [24] proposed an instance-centric hierarchical 
classification framework using the three-way decision method. Yu et al. [25] used the DTRS model to formulate an efficient 
automatic clustering method. Liu et al. [26] applied the three-way decision method to a policy-making procedure to reduce 
the decision risk.

The key feature of the DTRS is a sound mathematical interpretation of thresholds based on the Bayesian decision pro-
cedure. Using learned thresholds, three pairwise disjoint regions can be defined in the probabilistic rough set: positive, 
boundary, and negative regions. As a new semantic interpretation of the three regions, Yao [27,28] introduced the concept 
of a three-way decision comprising positive, negative, and boundary rules. However, it is not easy to obtain effective deci-
sion cost functions for the DTRS model because of a lack of prior knowledge. To overcome this problem, only a few studies 
have addressed the problem of learning the decision cost functions and thresholds from datasets automatically. In particu-
lar, Deng and Yao [29] and Jia et al. [30] proposed different single objective optimization models for automatically learning 
thresholds from datasets, where the former determined the optimal thresholds by aiming to minimize the uncertainty in-
duced by the three regions, whereas the latter focused on minimizing the decision cost for learning optimal thresholds. 
However, a major challenge regarding probabilistic rough set models was ignored in these models because they did not 
formulate a method for decreasing the size of the boundary region by further exploration of the data [31]. In particular, in 
the model proposed by Jia et al. [30], they used penalties to control the size of the boundary region, but the penalties were 
provided by users and they could not be selected easily. Herbert and Yao [31] proposed a game-theoretic rough set (GTRS) 
model to decrease the size of the boundary region and to calculate the required thresholds within a game-theoretic envi-
ronment. In a related study [32], the configuration of probabilistic thresholds was interpreted as a decision-making problem 
in a competitive game involving multiple criteria, such as accuracy, generality, confidence, and coverage. In a recent study of 
GTRS theory, Azam and Yao [33] constructed a mechanism for analyzing the uncertainties of rough set regions with the aim 
of determining effective threshold values. A competitive game was formulated between the regions to modify the thresholds 
in order to improve their respective uncertainty levels. By playing the game repeatedly and utilizing its results to update the 
thresholds, a learning mechanism was proposed to automatically tune the thresholds based on the data. The games based 
on accuracy and generality consider the three regions, and the uncertainty-based games consider the individual regions. 
However, in the GTRS model, users have to provide initial possible increases/decreases in the threshold values to set up the 
game. In addition, the games between decision cost and boundary regions were not investigated further.

In the present study, we propose a multi-objective optimization model for automatic threshold learning. We consider 
two significant problems regarding DTRS theory: decreasing the size of the boundary region and decreasing the overall 
decision cost for three types of rules. Using the model proposed by Jia et al. [30], we modify the formulae irrespective 
of the penalties in our first objective and constraint, before adding a simple but very meaningful objective, α–β , which 
intuitively represents the goal of decreasing the size of the boundary region. In contrast to our method, Li and Zhou [15]
proposed a three-way view decision model where optimistic, pessimistic, and equable decisions are made according to the 
cost of misclassification. The thresholds for probabilistic inclusion are calculated based on the minimal risk cost under the 
respective decision bias. Similarly, Min et al. [19] posited a minimal test cost reduction problem, which constitutes a new 
but more general problem than the classical reduction one. It is also quite different from our method.

The multi-objective problem is regarded as a game in our method to investigate the trade-off that exists between these 
two objectives. This game gives rise to a set of Pareto optimal solutions, among which one cannot be said to be better 
than the other. Excluding the Pareto optimal solutions, no other outcome makes each player (objective) at least as well off 
and at least one objective better off. In addition, two types of F_measure constraints are used to improve the classification 
ability of the selected solutions in our model. The first type of F_measure, which is called the F1_measure, is used at 
the end of the algorithm to preserve the solutions with better classification performance. The second, which is called the 
F2_measure, is applied during the iteration procedure. Using the self-correcting mechanism in the F2_measure, we modify 
α/β in non-feasible individuals to satisfy the F2_measure constraint.

We used 12 representative UCI datasets [34] to validate the performance of our model, where the experimental results 
demonstrated several advantages of our method. First, compared with the other methods mentioned above, a set of Pareto 
optimal thresholds is learned automatically and the penalties in Jia et al.’s model [30] can be neglected. Second, the newly 
added objective function to decrease the size of the boundary region is represented simply and it is easy to understand. 
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