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Distances between mass functions are instrumental tools in evidence theory, yet it is 
not always clear in which situation a particular distance should be used. Indeed, while 
the mathematical properties of distances have been well studied, how to interpret them 
is still a largely open issue. As a step towards answering this question, we propose to 
interpret distances by looking at their compatibility with partial orders. We formalize 
this compatibility through some mathematical properties thereby allowing to combine the 
advantages of both partial orders (clear semantics) and distances (richer structure and 
access to numerical tools). We explore in particular the case of informational partial orders, 
and how distances compatible with such orders can be used to approximate initial belief 
functions by simpler ones through the use of convex optimization. We finish by discussing 
some perspectives of the current work.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The theory of belief functions is a flexible framework to model uncertainty in the presence of imprecision. This frame-
work mixes set and probabilistic representations. It was initially proposed to model imprecise statistical observations [1], 
and this initial work was then extended [2] to include subjective and non-statistical uncertainty (e.g., when a variable has 
a fixed, yet ill-known value). This latter view was then pursued by Smets [3], who dissociated belief functions from any 
probabilistic interpretation. They include many other representations proposed in the literature, such as sets, probability 
measures or possibility measures. In this paper, we will use the term evidence theory as a generic term for frameworks 
relying on belief functions.

Among the tools developed to work with belief functions, distances have recently received a growing attention. They 
have been proposed as tools to achieve various tasks: measuring conflict [4,5], measuring dependencies [6], learning mod-
els from data [7,8], or belief function approximation [9–15]. Jousselme and Maupin [16] surveyed evidential distances and 
classified them with respect to their mathematical properties and to show some correlated behaviors among them. Follow-
ing Jousselme and Maupin’s analysis, Loudahi et al. [17,18] formalized some properties with intuitive interpretations in the 
framework of evidence theory: compatibility of distances with some combination rules and with the set-inclusion. Despite 
these efforts, providing evidential distances with clear interpretations remains an open problem.
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In this paper, we start in Section 3 by proposing a new answer to this problem: we interpret a distance by its com-
patibility or incompatibility with some partial order possessing a clear semantics. More precisely, we say that a distance is 
compatible with a partial order if, given a set of three belief functions forming a chain within this partial order, the distance 
between the minimal and the maximal belief functions should be greater than the distance between any other pair. We 
prove that this compatibility property holds for several infinite families of evidential distances when informational partial 
orders are considered, thereby formally bridging two important notions in the theory of belief functions.

We then study in Section 4 the problem of belief function approximation, in which partial orders related to informative 
content play a specific role. The combination of both distances and orders is very interesting in this problem, as the partial 
orders allow us to select those distances fitted to the approximation problem, while the use of specific distances (within the 
selected subset) allows us to take advantage of their mathematical properties to find unique solutions (when partial orders 
only offer sets of incomparable solutions). Indeed, these approximation problems are convex and can be easily solved using 
quadratic programming for instance.

Finally, Section 5 provides some discussion about the presented results and ideas. We briefly review the basic concepts 
of the theory of belief functions in Section 2.

2. Basics of evidence theory

This section reminds the notions of evidence theory used in this paper. More details about the various tools used in 
evidence theory can be found in [19], for example. After providing this necessary background, we will give a more detailed 
presentation of partial orders and distances used in evidence theory in section 3.

Let � = {ω1, . . . , ωn} be a finite space over which a given ill-known variable θ takes its values. In evidence theory, 
a mass function m : 2� → [0, 1] defined over the power set of � represents our uncertainty about the value of θ . The mass 
m(A) can be given several interpretations depending on the chosen interpretation:

• amount of evidence given to the fact that A contains the true value [2,3],
• or the frequency of the imprecise observation A [1].

Mass functions sum to one, i.e., 
∑

A∈2� m (A) = 1. A set A receiving a positive mass m(A) > 0 is called a focal element. We 
will denote by |A| the cardinality of a set A. In particular, |�| = n and |2�| = N = 2n .

Several alternative set-functions can then be defined to represent the same information as the one encoded in a mass 
function. The main ones are the plausibility, belief, implacability and commonality functions. The plausibility function pl :
2� → [0, 1] is defined as

pl(A) =
∑

E∩A �=∅
m (E) (1)

and evaluates how much event A (being true) is consistent with the current evidence. The belief bel : 2� → [0, 1] and
implicability b : 2� → [0, 1] functions are defined as

bel(A) =
∑

E⊆A,E �=∅
m (E) , (2)

b(A) =
∑
E⊆A

m (E) = bel(A) + m(∅). (3)

Both evaluate how much event A (being true) is implied by the current evidence, with the implicability assuming that ∅ can 
imply anything, and the belief discarding ∅ from valid hypotheses. We have pl(A) = 1 − b(Ac), Ac being the complement 
of A. Also, we always have bel(A) ≤ pl(A).

When m(∅) = 0, we have bel = b, and the couple belief/plausibility can be interpreted as bounds of an ill-known proba-
bility, in the sense that they induce a non-empty set

P(m) = {P |bel(A) ≤ P (A) ≤ pl(A),∀A ⊆ �}
where P are probability measures over the probability space 

(
�,2�, P

)
. Also, in this case, the value pl(A) − bel(A) mea-

sures the imprecision of the information contained in m. When pl(A) = bel(A) for all A, the set P(m) contains only one 
probability measure. This is a fully precise situation and m(E) > 0 only if |E| = 1. When pl(A) − bel(A) = 1 for all A, P(m)

is the set of all probability measures. This is a maximally imprecise situation and m(�) = 1.
Requiring m(∅) = 0 can therefore be seen as a consistency constraint, while allowing for m(∅) �= 0 means that m is 

allowed to encode some self-contradiction. A positive mass for ∅ features an underlying conflict between the pieces of 
evidence encoded by m. This conflict can have various origins: (i) untruthfulness of some of these pieces of evidence, 
(ii) the fact that the true value is not in � (open world assumption). We will call normalized those masses such that 
m(∅) = 0.
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