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In this work, we define a set of properties that any measure of functional dependence that 
exists between random vectors should possess. We also construct measures of functional 
dependence and show that they satisfy the properties mentioned above. Relationships 
between these measures and previously defined measures of functional dependence 
between random variables are discussed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

How can we determine whether a random vector Y is a function of a random vector X? More generally, how can we or-
der random vectors in terms of how much they depend on a specific random vector? For continuous random variables, two 
related measures have been proposed: one measure was proposed by Dette et al. [1] (see also Siburg and Stoimenov [4]), 
while another measure was proposed by Trutschnig [7]. When written using the copula associated with these random vari-
ables, both measures were similar. Both are based on modified Sobolev norms, where the former is based on the L2-Sobolev 
norm while the latter is based on the L1-Sobolev norm. Note that Dette’s measure was extended to the case of a continuous 
random vector Y and a continuous random variable X by [6].

All of these measures have one common property: they can be written in terms of the first partial derivative of the 
copula associated with (X, Y ). An intuitive extension of these measures to the case of continuous random vectors is to use 
higher order derivatives of copulas. This is not applicable, however, since higher order derivatives of copulas generally do 
not exist, not even in the weak sense. A correct extension is obtained by interpreting the first partial derivatives of a copula 
in probabilistic terms: in this sense, they then represent a conditional distribution of uniform random variables when given 
another uniform random variable. Based on this idea, we propose a family of measures of functional dependence in the 
case of random vectors X and Y . Where applicable, we will discuss relationships between these measures and previously 
defined measures.

The organization of this work is as follows. In Section 2, we discuss terminologies and notations used throughout this 
work. In Section 3, we discuss the basic properties of measures of functional dependence. In Section 4, we give an example 
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construction of these measures. In Section 5, we provide proofs that these measures satisfy the properties discussed in 
Section 3. Sections 3–5 can be read in any particular order, however.

2. Preliminaries

In this work, the space Rn will be regarded as the product lattice of the real line R. For example, the statement 
(x1, . . . , xn) ≤ (y1, . . . , yn) means xi ≤ yi for all i = 1, . . . , n.

Since this work deals mainly with random vectors, the terminology joint, as in joint distribution, will have a slightly 
different meaning than usual. For any (n-dimensional) random vector X , the (n-dimensional) distribution of X is the function 
F X defined by F X (x) = P (X ≤ x). The (n-dimensional) density of an (n-dimensional) distribution F X , if exists, is a function 
f X such that F X (x) = ∫

(−∞,x] f X (t)dt for all x, that is, f X = ∂n F X
∂x1···∂xn

. To simplify the notation, we will write ∂ F X
∂x instead of 

∂n F X
∂x1···∂xn

. For any random vectors X and Y , the joint distribution of X and Y is the function F X,Y defined as F X,Y (x, y) =
P (X ≤ x, Y ≤ y). If we identify the space Rn ×R

k with the space Rn+k , then the joint distribution of X and Y is simply the 
distribution of (X, Y ). The term joint, however, helps us to differentiate whether we are considering two vectors separately. 
Moreover, the distributions of X and Y are marginals of the joint distribution of X and Y . If the joint distribution F X,Y has 
a density f X,Y , then its marginals F X and FY also have densities f X and fY , which are related via the formula f X (x) =∫

f X,Y (x, y)dy and fY (y) = ∫ f X,Y (x, y)dx, respectively.
An (n-dimensional) copula is a distribution of n random variables that have a uniform distribution in the unit interval 

I = [0, 1]. An (n-dimensional) subcopula is a restriction of a copula into the product of closed subsets of I. Any random 
vector X = (X1, . . . , Xn) is associated with a unique subcopula[A3] S X , where the domain of S X is the product of the ranges 
of F X1 , . . . , F Xn such that

F X (x1, . . . , xn) = S X
(

F X1(x1), . . . , F Xn (xn)
)

(1)

for all x1, . . . , xn ∈ R [5]. If the distribution of Xi is continuous for all i, then S X is a copula. By regarding a pair of 
random vectors X and Y as a random vector (X, Y ), we may define the joint subcopula associated with X and Y as the 
subcopula associated with (X, Y ). Moreover, we call the subcopula associated with X and the subcopula associated with Y
the marginals of the joint (sub)copula associated with X and Y .

Given random vectors X and Y , we define the conditional distribution FY |X of Y given X by letting

FY |X (y|x) = lim
h↘0

P (Y ≤ y, x − h < X ≤ x + h)

P (x − h < X ≤ x + h)
(2)

whenever the limit exists. It is well-known that FY |X has a version in which the function FY |X (·|x) is a distribution for all x, 
which is the so-called regular conditional distribution of Y given X . In cases where the joint distribution of X and Y has 
a density f X,Y , the quotient fY |X (y|x) = f X,Y (x,y)

f X (x) is the density of FY |X , that is, FY |X (y|x) = ∫
(−∞,y] fY |X (t|x)dt . Moreover, 

FY |X (y|x) =
∂n F X,Y
∂x1 ···∂xn

(x,y)

∂n F X
∂x1 ···∂xn

(x)
. To simplify the notation, we write ∂ F X,Y

∂ F X
instead of 

∂n F X,Y
∂x1 ···∂xn

∂n F X
∂x1 ···∂xn

in this case.

Note that∫
1(−∞,x](s)1(−∞,y](t)dF X,Y (s, t) = P(X ≤ x, Y ≤ y)

=
∫

1(−∞,x](s)P(Y ≤ y|X = s)dF X (s)

=
∫

1(−∞,x](s)1(−∞,y](t)dFY |X (t|s)dF X (s)

for all x, y. Using monotone class theorems (see, e.g., Yeh [8, Theorem 1.10]), we can conclude that∫
f (x, y)dF X,Y (s, t) =

∫
f (x, y)dFY |X (t|s)dF X (s) (3)

for the bounded measurable function f .
For continuous random variables X and Y , Dette et al. [1] defined a measure ω(Y |X) = ω(C X,Y ) by letting

ω(Y |X) = 6
∫ ∫ (

∂C X,Y

∂u
(u, v)

)2

dudv − 2

where C X,Y is the joint copula associated with X and Y . Note that ω(Y |X) is actually a normalization of the function 

C �→ ∫ ∫ ( ∂C X,Y
∂u (u, v) − ∂�

∂u (u, v)
)2

dudv where �(u, v) = uv is the copula associated with independent continuous random 



Download English Version:

https://daneshyari.com/en/article/397254

Download Persian Version:

https://daneshyari.com/article/397254

Daneshyari.com

https://daneshyari.com/en/article/397254
https://daneshyari.com/article/397254
https://daneshyari.com

