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Inconsistency measures have been proposed to assess the severity of inconsistencies 
in knowledge bases of classical logic in a quantitative way. In general, computing the 
value of inconsistency is a computationally hard task as it is based on the satisfiability 
problem which is itself NP-complete. In this work, we address the problem of measuring 
inconsistency in knowledge bases that are accessed in a stream of propositional formulæ. 
That is, the formulæ of a knowledge base cannot be accessed directly but only once 
through processing of the stream. This work is a first step towards practicable inconsistency 
measurement for applications such as Linked Open Data, where huge amounts of 
information is distributed across the web and a direct assessment of the quality or 
inconsistency of this information is infeasible due to its size. Here we discuss the problem 
of stream-based inconsistency measurement on classical logic, in order to make use of 
existing measures for classical logic. However, it turns out that inconsistency measures 
defined on the notion of minimal inconsistent subsets are usually not apt to be used 
in the streaming scenario. In order to address this issue, we adapt measures defined 
on paraconsistent logics and also present a novel inconsistency measure based on the 
notion of a hitting set. We conduct an extensive empirical analysis on the behavior of 
these different inconsistency measures in the streaming scenario, in terms of runtime, 
accuracy, and scalability. We conclude that for two of these measures, the stream-based 
variant of the new inconsistency measure and the stream-based variant of the contension
inconsistency measure, large-scale inconsistency measurement in streaming scenarios is 
feasible.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Inconsistency measurement is a subfield of Knowledge Representation and Reasoning (KR) that is concerned with the 
quantitative assessment of the severity of inconsistencies in knowledge bases. Consider the following two knowledge bases 
K1 and K2 formalized in propositional logic:

K1 = {a,b ∨ c,¬a ∧ ¬b,d} K2 = {a,¬a,b,¬b}
Both knowledge bases are classically inconsistent as for K1 we have {a, ¬a ∧ ¬b} |=⊥ and for K2 we have, e.g., {a, ¬a} |=⊥. 
These inconsistencies render the knowledge bases useless for reasoning if one wants to use classical reasoning techniques. In 
order to make the knowledge bases useful again, one can either use non-monotonic/paraconsistent reasoning techniques [29,
37] or one revises the knowledge bases appropriately to make them consistent [12]. Looking at the knowledge bases K1 and 
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K2 one can observe that the severity of their inconsistency is different. In K1, only two out of four formulæ (a and ¬a ∧¬b) 
are participating in making K1 inconsistent while for K2 all formulæ contribute to its inconsistency. Furthermore, for K1
only two propositions (a and b) are conflicting and using e.g. paraconsistent reasoning one could still infer meaningful 
statements about c and d. For K2 no such statement can be made. This leads to the assessment that K2 should be regarded 
more inconsistent than K1. Inconsistency measures can be used to quantitatively assess the inconsistency of knowledge 
bases and to provide a guide for how to repair them. Moreover, they can be used as an analytical tool to assess the 
quality of knowledge representation. For example, one simple inconsistency measure, see e.g. [10], is to take the number of 
minimal inconsistent subsets (MIs) as an indicator for the inconsistency: the more MIs a knowledge base contains, the more 
inconsistent it is. For K1 we have then 1 as its inconsistency value and for K2 we have 2. A lot of different approaches 
of inconsistency measures and postulates for inconsistency measures have been proposed, mostly for classical propositional 
logic [20,13–16,27,32,31,45,10,11,2,30,19], but also for classical first-order logic [8,9], description logics [26,6,38,46], default 
logics [7], and probabilistic and other weighted logics [5,34,25,40,41,35,33].

Inconsistencies arise easily when many experts share their knowledge in order to construct a joint knowledge base, 
particularly for large knowledge bases as they appear in, e.g., Semantic Web applications [39]. So far, the field of incon-
sistency measurement is focused on the problem on what a reasonable inconsistency measure is and what properties it 
should satisfy. In this paper, we consider the computational problems of inconsistency measurement, particularly with re-
spect scenarios where the knowledge base can only be processed in a step-by-step fashion, i.e., in streams. More precisely, 
we consider a scenario where, instead of a knowledge base K we are faced with a stream S that for any point in time i ∈ N

gives us a propositional formula φ = S(i). The measures we are interested in update for every time step i the currently 
computed inconsistency value and therefore approximate the actual inconsistency value of 

⋃i
j=1{S( j)} with the limiting 

case i → ∞.
To address the issue of stream-based inconsistency measurement, we present a novel inconsistency measure Ihs that 

is inspired by the η-inconsistency measure of Knight [21] and is particularly apt to be applied to the streaming scenario. 
This measure bases on the notion of a hitting set which (in our context) is a minimal set of classical interpretations such 
that every formula of a knowledge base is satisfied by at least one element of the set. We then formalize the problem of 
stream-based inconsistency measurement, describe desirable properties of stream-based inconsistency measures by relat-
ing the problem to the classical setting of inconsistency measurement, and propose specific instantiations for stream-based 
inconsistency measures. We investigate the properties and the behavior of our new measures both analytically and empiri-
cally. For the latter, we conduct an extensive empirical evaluation on artificial data. Our findings show that the stream-based 
variant of our novel measure, as well as a measure based on paraconsistent logics are suitable in terms of runtime, accuracy, 
and scalability for the stream-based scenario. In summary, the contributions of this paper are as follows:

1. We present a novel inconsistency measure Ihs based on hitting sets and show how this measure relates to other 
measures (Section 3).

2. We formalize a theory of inconsistency measurement in streams and relate it to the classical setting of inconsistency 
measurement (Section 4).

3. We provide a window-based approach for applying classical inconsistency measures to the streaming case and develop 
specific approaches for some concrete classical measures (Section 5).

4. We conduct an extensive empirical study on the behavior of those inconsistency measures in terms of runtime, accuracy, 
and scalability. In particular, we show that the stream variants of Ihs and of the contension measure Ic are effective 
and accurate for measuring inconsistency in the streaming scenario (Section 6).

Additionally, we give necessary preliminaries for propositional logic in Section 2, provide some review of related work in 
Section 7 and conclude the paper in Section 8. Proofs of technical results can be found in the appendix. This paper extends 
and revises the previously published paper [42] by correcting and extending technical results, providing proofs, and adding 
further discussion.

2. Preliminaries

Let At be a propositional signature, i.e., a (finite) set of propositions (also called atoms), and let L(At) the corresponding 
propositional language constructed using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulæ K ⊆L(At). Let K(At) be the set of all knowledge bases.

We write K instead of K(At) when there is no ambiguity regarding the signature. If X is a formula or a set of formulaæ 
we write At(X) to denote the set of propositions appearing in X . Semantics to a propositional language L(At) is given by 
interpretations and an interpretation ω on At is a function ω : At → {true, false}. Let Int(At) denote the set of all interpretations 
for At. An interpretation ω satisfies (or is a model of) an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = true. For 
ω ∈ Int(At) and φ, φ′ ∈L(At) we define

• ω |= ¬φ if and only if ω 
|= φ
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