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Marginal AMP chain graphs are a recently introduced family of models that is based on 
graphs that may have undirected, directed and bidirected edges. They unify and generalize 
the AMP and the multivariate regression interpretations of chain graphs. In this paper, 
we present a constraint based algorithm for learning a marginal AMP chain graph from a 
probability distribution which is faithful to it. We show that the marginal AMP chain graph 
returned by our algorithm is a distinguished member of its Markov equivalence class. We 
also show that our algorithm performs well in practice. Finally, we show that the extension 
of Meek’s conjecture to marginal AMP chain graphs does not hold, which compromises the 
development of efficient and correct score+search learning algorithms under assumptions 
weaker than faithfulness.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Chain graphs (CGs) are graphs with possibly directed and undirected edges, and no semidirected cycle. They have been 
extensively studied as a formalism to represent independence models, because they can model symmetric and asymmet-
ric relationships between the random variables of interest. However, there are three different interpretations of CGs as 
independence models: The Lauritzen–Wermuth–Frydenberg (LWF) interpretation [11], the multivariate regression (MVR) 
interpretation [8], and the Andersson–Madigan–Perlman (AMP) interpretation [2]. It is worth mentioning that no interpreta-
tion subsumes another: There are many independence models that can be represented by a CG under one interpretation but 
that cannot be represented by any CG under the other interpretations [2,24]. Moreover, although MVR CGs were originally 
represented using dashed directed and undirected edges, we like other authors prefer to represent them using solid directed 
and bidirected edges.

Recently, a new family of models has been proposed to unify and generalize the AMP and MVR interpretations of CGs 
[17]. This new family, named marginal AMP (MAMP) CGs, is based on graphs that may have undirected, directed and 
bidirected edges. This paper complements that by Peña [17] by presenting an algorithm for learning a MAMP CG from a 
probability distribution which is faithful to it. Our algorithm is constraint based and builds upon those developed by Sonntag 
and Peña [23] and Peña [16] for learning, respectively, MVR and AMP CGs under the faithfulness assumption. It is worth 
mentioning that there also exist algorithms for learning LWF CGs under the faithfulness assumption [12,27] and under the 
milder composition property assumption [19]. In this paper, we also show that the extension of Meek’s conjecture to MAMP 
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CGs does not hold, which compromises the development of efficient and correct score+search learning algorithms under 
assumptions weaker than faithfulness.

Finally, we should mention that this paper is an extended version of that by Peña [18]. The extension consists in that 
the learning algorithm presented in that paper has been modified so that it returns a distinguished member of a Markov 
equivalence class of MAMP CGs, rather than just a member of the class. As a consequence, the proof of correctness of the 
algorithm has changed significantly. Moreover, the algorithm has been implemented and evaluated. This paper reports the 
results of the evaluation for the first time.

The rest of this paper is organized as follows. We start with some preliminaries in Section 2. Then, we introduce MAMP 
CGs in Section 3, followed by the algorithm for learning them in Section 4. In that section, we also include a review of other 
learning algorithms that are related to ours. We report the experimental results in Section 5. We close the paper with some 
discussion in Section 6. All the proofs appear in Appendix A at the end of the paper.

2. Preliminaries

In this section, we introduce some concepts of models based on graphs, i.e. graphical models. Most of these concepts 
have a unique definition in the literature. However, a few concepts have more than one and we opt for the most suitable 
in this work. All the graphs and probability distributions in this paper are defined over a finite set V . All the graphs in this 
paper are simple, i.e. they contain at most one edge between any pair of nodes. The elements of V are not distinguished 
from singletons.

If a graph G contains an undirected, directed or bidirected edge between two nodes V 1 and V 2, then we write that 
V 1− V 2, V 1→ V 2 or V 1↔ V 2 is in G . We represent with a circle, such as in V 1 ←⊸V 2 or V 1 ⊸⊸ V 2, that the end of an edge 
is unspecified, i.e. it may be an arrowhead or nothing. If the edge is of the form V 1 ←⊸V 2, then we say it has an arrowhead 
at V 2. If the edge is of the form V 1→ V 2, then we say that it has an arrowtail at V 1. The parents of a set of nodes X of G
is the set paG(X) = {V 1∣V 1 → V 2 is in G , V 1 ∉ X and V 2 ∈ X}. The children of X is the set chG(X) = {V 1∣V 1 ← V 2 is in G , 
V 1 ∉ X and V 2 ∈ X}. The neighbors of X is the set neG(X) = {V 1∣V 1−V 2 is in G , V 1 ∉ X and V 2 ∈ X}. The spouses of X is the 
set spG(X) = {V 1∣V 1↔ V 2 is in G , V 1 ∉ X and V 2 ∈ X}. The adjacents of X is the set adG(X) = neG(X) ∪paG(X) ∪ chG(X) ∪
spG(X). A route between a node V 1 and a node Vn in G is a sequence of (not necessarily distinct) nodes V 1, . . . , Vn such 
that V i ∈ adG(V i+1) for all 1 ≤ i < n. If the nodes in the route are all distinct, then the route is called a path. The length of a 
route is the number of (not necessarily distinct) edges in the route, e.g. the length of the route V 1, . . . , Vn is n − 1. A route 
is called descending if V i → V i+1, V i − V i+1 or V i ↔ V i+1 is in G for all 1 ≤ i < n. A route is called strictly descending if 
V i → V i+1 is in G for all 1 ≤ i < n. The descendants of a set of nodes X of G is the set deG(X) = {Vn∣ there is a descending 
route from V 1 to Vn in G , V 1 ∈ X and Vn ∉ X}. The strict ascendants of X is the set sanG(X) = {V 1∣ there is a strictly 
descending route from V 1 to Vn in G , V 1 ∉ X and Vn ∈ X}. A route V 1, . . . , Vn in G is called a cycle if Vn = V 1. Moreover, 
it is called a semidirected cycle if Vn = V 1, V 1→ V 2 is in G and V i → V i+1, V i ↔ V i+1 or V i − V i+1 is in G for all 1 < i < n. 
A cycle has a chord if two non-consecutive nodes of the cycle are adjacent in G . The subgraph of G induced by a set of 
nodes X is the graph over X that has all and only the edges in G whose both ends are in X . Moreover, a triplex ({A, C}, B)
in G is an induced subgraph of the form A ←⊸B ←⊸ C , A ←⊸B − C or A − B ←⊸ C .

A directed and acyclic graph (DAG) is a graph with only directed edges and without semidirected cycles. An AMP chain 
graph (AMP CG) is a graph whose every edge is directed or undirected such that it has no semidirected cycles. A MVR chain 
graph (MVR CG) is a graph whose every edge is directed or bidirected such that it has no semidirected cycles. Clearly, DAGs 
are a special case of AMP and MVR CGs: DAGs are AMP CGs without undirected edges, and DAGs are MVR CGs without 
bidirected edges. We now recall the semantics of AMP and MVR CGs. A node B in a path ρ in an AMP CG G is called a 
triplex node in ρ if A → B ← C , A → B − C , or A − B ← C is a subpath of ρ . Moreover, ρ is said to be Z -open with Z ⊆ V
when

• every triplex node in ρ is in Z ∪ sanG(Z), and
• every non-triplex node B in ρ is outside Z , unless A − B − C is a subpath of ρ and paG(B) ∖ Z ≠∅.

A node B in a path ρ in an MVR CG G is called a triplex node in ρ if A ←⊸B ←⊸ C is a subpath of ρ . Moreover, ρ is 
said to be Z -open with Z ⊆ V when

• every triplex node in ρ is in Z ∪ sanG(Z), and
• every non-triplex node B in ρ is outside Z .

Let X , Y and Z denote three disjoint subsets of V . When there is no Z -open path in an AMP or MVR CG G between a 
node in X and a node in Y , we say that X is separated from Y given Z in G and denote it as X ⊥G Y ∣Z . The independence 
model represented by G , denoted as I(G), is the set of separations X ⊥G Y ∣Z . In general, I(G) is different depending on 
whether G is an AMP or MVR CG. However, it is the same when G is a DAG.
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