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Multi-label classification problems require each instance to be assigned a subset of a 
defined set of labels. This problem is equivalent to finding a multi-valued decision function 
that predicts a vector of binary classes. In this paper we study the decision boundaries of 
two widely used approaches for building multi-label classifiers, when Bayesian network-
augmented naive Bayes classifiers are used as base models: Binary relevance method
and chain classifiers. In particular extending previous single-label results to multi-label 
chain classifiers, we find polynomial expressions for the multi-valued decision functions 
associated with these methods. We prove upper boundings on the expressive power of 
both methods and we prove that chain classifiers provide a more expressive model than 
the binary relevance method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider a multi-label classification problem [24,20] over categorical predictors, that is, mapping every instance 
x = (x1, . . . , xn) to a subset of h labels:

� = �1 × · · · × �n → Y ⊆ Y = {y1, . . . , yh},
where �i ⊂ R, |�i| = mi < ∞. As usual the problem could be transformed into a multi-dimensional binary classification 
problem, that is, finding an h-valued decision function f that maps every instance of n predictor variables x to a vector of h
binary values c = (c1, . . . , ch) ∈ {−1, +1}h:

f : � = �1 × · · · × �n → {−1,+1}h

(x1, . . . , xn) �→ (c1, . . . , ch),

where ci = +1 (−1) means that the ith label is present (absent) in the predicted label subset Y . We consider the predictor 
variables X1, . . . , Xn and the binary classes Ci ∈ {−1, +1} as categorical random variables. Real examples include classifi-
cation of texts into different categories [8], diagnosis of multiple diseases from common symptoms and identification of 
multiple biological gene functions [3,23].

The easiest way to approach a multi-label classification problem is to divide it into a set of single-label classification 
problems (equivalent to binary classification problems). Each binary problem is then solved independently and thus h binary 
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Fig. 1. Naive Bayes classifier structure in Example 1.

classifiers, one for each class variable Ci , are built. Each binary classifier is learned from predictor variables and Ci data 
only. At the end the results are combined to form multi-label prediction. Known as binary relevance, this method is easily 
implementable, has low computational complexity and is fully parallelizable. Therefore it is scalable to a large number of 
classes. However, it completely ignores dependencies among labels and generally does not represent the most likely set of 
labels.

Chain classifiers [18,6] relax the independence assumption by iteratively adding class dependencies in the binary rel-
evance scheme. The kth classifier in the chain predicts class Ck from X1, . . . , Xn, C1, . . . , Ck−1. Sucar et al. [19] employed 
naive Bayes within chain classifiers.

In this paper, we study differences in the expressive power of these two methods when Bayesian network (BN) classi-
fiers [1] are used. Expressive power of a classifier over categorical variables could be seen simply as the number of distinct 
decision functions that a given type of classifier induces.

In Varando et al. [22] the expressive power of one-dimensional binary, or one-label classifiers has been studied. In 
particular, the results of Minsky [11] and Peot [14] about the decision boundary of naive Bayes have been extended to a 
broader class of Bayesian network classifiers. A polynomial representation of the decision functions induced by Bayesian 
network-augmented naive Bayes classifier is described, and in absence of V -structures a stronger characterization is shown 
to hold. In this paper, we extend these results to multi-label classifiers. Moreover, we suggest some theoretical reasons 
why the simple binary relevance method can perform poorly when relationships among labels exist, and we prove that 
chain classifiers provide more expressive models. A broader chain classifiers class than in Varando et al. [21] is considered 
and studied extensively and a bounding on the expressive power of those models is proved. Moreover we present novel 
illustrative examples both about the one-dimensional results and about multi-label ones.

In Section 2 we review previous work on one-dimensional binary classifiers. We describe the binary relevance method 
and compute its expressive power in Section 3. We analyse chain classifiers in Section 4. In Section 5 we compare the two 
methods, proving that actually chain classifiers are more expressive than binary relevance and in Section 6 we present our 
conclusions and some ideas for future research.

2. Expressive power of one-dimensional BN classifiers

We report here previous results on the decision boundary and expressive power of one-label, or equivalently one-
dimensional binary, BN classifiers [22]. We restrict to binary classifier and we can assume that the class variables takes 
its values on {−1, +1}. Classifiers where the class variable takes more than two values are more complex to study, the as-
sociated decision functions could be seen as combinations of binary decision functions and thus some of the results of this 
section could probably be extended. In the present work we prefer to remain in the binary case. Moreover binary classes 
are the variables needed to define multi-label classification problems.

In particular, we look at Bayesian network-augmented naive Bayes (BAN) classifiers [7].
BAN classifiers are Bayesian network classifiers where the class variable C is assumed to be a parent of every predictor 

and the predictor sub-graph G can be a general BN. We observe that every BAN classifier is determined by the predictor 
sub-graph G , because the class variable C is superposed as parent of every variable of G . As we focus only on Bayesian 
network, we will use the word graph to refer only to a directed acyclic graph, the structure of a Bayesian network (For 
general notations see Table 2).

For every BAN classifier, the induced decision function is

f BAN
G (x1, . . . , xn) = arg max

c∈{−1,+1} P (C = c, X1 = x1, . . . , Xn = xn), (1)

and P (C = c, X1 = x1, . . . , Xn = xn) is factorized according to BN theory [13] as

P (C = c)
n∏

i=1

P
(

Xi = xi|C = c,Xpa(i) = xpa(i)
)
,

where Xpa(i) are the parents of Xi in the predictor sub-graph G . Moreover, pa(i) denotes the set of indexes defining the 
parents of Xi that are not C and Mi = ×s∈pa(i){1, . . . , ms}, the set of possible configurations of Xpa(i) .

Example 1. Consider a naive Bayes classifier (structure in Fig. 1), that is, the simplest BAN, over predictor variables X1 ∈
{0, 1, 2}, X2 ∈ {0, 1}. In this case the joint probability over (C, X1, X2) is factorized as
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