
Parallel skyline computation on multicore architectures$

Hyeonseung Im, Jonghyun Park, Sungwoo Park �

Pohang University of Science and Technology (POSTECH), Republic of Korea

a r t i c l e i n f o

Article history:

Received 19 May 2010

Received in revised form

8 September 2010

Accepted 6 October 2010

Recommended by: L. Wong
Available online 5 January 2011

Keywords:

Skyline computation

Multicore architecture

Parallel computation

a b s t r a c t

With the advent of multicore processors, it has become imperative to write parallel

programs if one wishes to exploit the next generation of processors. This paper deals

with skyline computation as a case study of parallelizing database operations on

multicore architectures. First we parallelize three sequential skyline algorithms, BBS,

SFS, and SSkyline, to see if the design principles of sequential skyline computation also

extend to parallel skyline computation. Then we develop a new parallel skyline

algorithm PSkyline based on the divide-and-conquer strategy. Experimental results

show that all the algorithms successfully utilize multiple cores to achieve a reasonable

speedup. In particular, PSkyline achieves a speedup approximately proportional to the

number of cores when it needs a parallel computation the most.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Multicore processors are going mainstream [26]. As a
response to the problem of excessive power consumption
and the lack of new optimization techniques, the industry
has adopted a new strategy for boosting processor perfor-
mance by integrating multiple cores into a single processor
instead of increasing clock frequency. In upcoming years,
we will see processors with eight, sixteen, or more cores,
but not with much higher clock frequency.

The advent of multicore processors is making a profound
impact on software development [27]. As there is little
performance gain when running sequential programs on
multicore processors, it is imperative to write parallel
programs in order to exploit the next generation of proces-
sors. Due to simpler design and lower clock frequency in
individual cores, sequential programs may even experience
performance loss on tomorrow’s multicore processors.

This radical change in processor architectures begs an
important question for the database community: how can

we exploit multicore architectures in implementing database

operations? Since multicore architectures combine multi-
ple independent cores sharing common input/output (I/O)
devices, this question is particularly relevant if database
operations under consideration are computationally
intensive, but not I/O intensive. In such cases, multicore
architectures offer an added advantage of negligible or
low overhead for communications between parallel
threads, which we can implement as reads and writes to
the main memory or disk.

This paper deals with skyline computation [2] as a case
study of parallelizing database operations on multicore
architectures. Given a multi-dimensional dataset of tuples,
a skyline computation returns a subset of tuples, called
skyline tuples, that are no worse than, or not dominated by,
any other tuples when all dimensions are considered
together. Because of its potential applications in decision
making, skyline computation has drawn a lot of attention
in the database community [14,3,9,19,16,1,35].

The computationally intensive nature of skyline com-
putation makes it a good candidate for parallelization
especially on multicore architectures. Typically the cost
of skyline computation depends heavily on the number
of comparisons between tuples, called dominance tests,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2010.10.005

$ This is a significantly extended version of the paper that appeared in

the 22nd IEEE International Conference on Data Engineering, 2009 [20].

This work was supported by the Korea Research Foundation Grant

funded by the Korean Government (KRF-2008-313-D00969).
� Corresponding author.

E-mail addresses: genilhs@postech.ac.kr (H. Im),

parjong@postech.ac.kr (J. Park), gla@postech.ac.kr (S. Park).

Information Systems 36 (2011) 808–823

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.10.005
mailto:genilhs@postech.ac.kr
mailto:parjong@postech.ac.kr
mailto:gla@postech.ac.kr
dx.doi.org/10.1016/j.is.2010.10.005

which involve only integer or floating-point number
comparisons and no I/O. Since a large number of dom-
inance tests can often be performed independently, sky-
line computation has a good potential to exploit multicore
architectures. So far, however, its parallelization has been
considered mainly on distributed architectures [4,31–33];
only Selke et al. recently consider its parallelization on
multicore architectures [24].

We parallelize three sequential skyline algorithms of
different kinds to see if the design principles of sequential
skyline computation also extend to parallel skyline com-
putation. From index-based skyline algorithms, we
choose the branch-and-bound skyline (BBS) algorithm
[19] which uses R-trees [10] to eliminate from dominance
tests a block of tuples at once. From sorting-based skyline
algorithms, we choose the sort-filter-skyline (SFS) algo-
rithm [3] which presorts a dataset according to a mono-
tone preference function so that no tuple is dominated by
succeeding tuples in the sorted dataset. We also paralle-
lize a new nested-loop skyline algorithm, called SSkyline
(Simple Skyline), which neither uses index structures nor
presorts a dataset. In addition to parallelizing three
sequential skyline algorithms, we also develop a new
skyline algorithm, called PSkyline (Parallel Skyline),
which is based on the divide-and-conquer strategy and
designed specifically for parallel skyline computation.
PSkyline is remarkably simple because it uses no index
structures and divides a dataset linearly into smaller
blocks of the same size (unlike existing divide-and-con-
quer skyline algorithms which exploit geometric proper-
ties of datasets).

We test the four parallel skyline algorithms on a
sixteen-core machine (with four quad-core CPUs). Experi-
mental results show that all the algorithms successfully
utilize multiple cores to achieve reasonable speedups
except on low-dimensional datasets and datasets with a
low density of skyline tuples on which the sequential
algorithms already run fast enough. In particular, the
comparison between parallel BBS and PSkyline suggests
that for the efficiency of a parallel skyline algorithm, a
simple organization of candidate skyline tuples may be a
better choice than a clever organization that eliminates
from dominance tests a block of tuples at once but favors
only sequential skyline computation.

Although the main topic of this paper is parallel sky-
line computation on multicore architectures, its main
contribution also lies in providing evidence that the time
is ripe for a marriage between database operations and
multicore architectures. In order to exploit multicore
architectures to their fullest, we may have to devise
new index structures or reimplement database operations
accordingly. In fact, researches along this line are already
producing highly promising (and even surprising) results
in the database community [17,11–13,29,6]. Certainly we
do not want to find ourselves struggling to squeeze
performance out of just a single core while all other 31
cores remain idle!

This paper is organized as follows. Section 2 introduces
skyline computation and the parallel programming envir-
onment OpenMP [5] for implementing the parallel skyline
algorithms, and discusses related work. Sections 3 and 4

explain how we parallelize BBS and SFS, respectively.
Section 5 presents SSkyline and its parallelization.
Section 6 presents the design and implementation of our
parallel skyline algorithm PSkyline. Section 7 gives
experimental results and Section 8 concludes.

2. Preliminaries

This section reviews basic properties of skyline com-
putation and gives a brief introduction to OpenMP. Then it
discusses related work.

2.1. Skyline computation

Given a dataset, a skyline query retrieves a subset of
tuples, called a skyline set, that are not dominated by any
other tuples. Under the assumption that smaller values
are better, a tuple p dominates another tuple q if all
elements of p are smaller than or equal to their corre-
sponding elements of q and there exists at least one
element of p that is strictly smaller than its corresponding
element of q. Thus the skyline set consists of those tuples
that are no worse than any other tuples when all dimen-
sions are considered together.

Let us formally define the skyline set of a d-dimen-
sional dataset D. We write p[i] for the i-th element of
tuple p where 1r ird. We write p!q to mean that tuple
p dominates tuple q, i.e., p½i�rq½i� holds for 1r ird and
there exists a dimension k such that p½k�oq½k�. We also
write pEq to mean that p does not dominate q, and
p!gq to mean that p and q are incomparable (pEq and
qEp). Then the skyline set SðDÞ of D is defined as

SðDÞ ¼ fp 2 DjqEp if q 2 Dg

Note that SðDÞ � D and SðSðDÞÞ ¼ SðDÞ hold. We refer to
those tuples in the skyline set as skyline tuples.

The computational cost of a skyline query mainly
depends on the number of dominance tests performed
to identify skyline tuples. A dominance test between two
tuples p and q determines whether p dominates q (p!q),
q dominates p (q!p), or p and q are incomparable
(p!gq). The computational cost of a single dominance
test increases with the dimensionality of the dataset.

Usually a skyline algorithm reduces the number of
dominance tests by exploiting specific properties of sky-
line tuples. For example, transitivity of ! allows us to
eliminate from further consideration any tuple as soon as
we find that it is dominated by another tuple:

Proposition 2.1 (Transitivity of !). If p!q and q!r, then

p!r.

Another useful property is that we may consider
incomparable datasets independently of each other. We
say that two datasets D1 and D2 are incomparable, written
D1!gD2, if p!gq holds for every pair of tuples p 2 D1

and q 2 D2.

Proposition 2.2 (Incomparability). If D1!gD2, then

SðD1 [D2Þ ¼ SðD1Þ [SðD2Þ.

H. Im et al. / Information Systems 36 (2011) 808–823 809

Download English Version:

https://daneshyari.com/en/article/397276

Download Persian Version:

https://daneshyari.com/article/397276

Daneshyari.com

https://daneshyari.com/en/article/397276
https://daneshyari.com/article/397276
https://daneshyari.com

