
A simple deterministic algorithm for guaranteeing the forward
progress of transactions$

Charles E. Leiserson
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, United States

a r t i c l e i n f o

Article history:
Received 13 October 2015
Accepted 28 October 2015
Available online 21 December 2015

Keywords:
Algorithm
Contention manager
Deadlock
Forward progress
Mutual exclusion
Ownership array
Proof
Synchronization
Transaction

a b s t r a c t

This paper describes a remarkably simple deterministic (not probabilistic) contention-
management algorithm for guaranteeing the forward progress of transactions — avoiding
deadlocks, livelocks, and other anomalies. The transactions must be finite (no infinite
loops), but on each restart, a transaction may access different shared-memory locations.
The algorithm supports irrevocable transactions as long as the transaction satisfies a
simple ordering constraint. In particular, a transaction that accesses only one shared-
memory location is never aborted. The algorithm is suitable for both hardware and
software transactional-memory systems. It also can be used in some contexts as a locking
protocol for implementing transactions “by hand.”

& 2016 Published by Elsevier Ltd.

1. Introduction

Transactional memory [14,10,25,19,24,9] has been
proposed as a general and flexible way to allow programs
to read and modify disparate shared-memory locations
atomically. The basic idea of transactional memory rests on
transactions [5,16], which offer a method for providing
mutual synchronization without the protocol intricacies of
conventional synchronization methods, such as locking or
nonblocking synchronization. Many textbooks on con-
currency (e.g., [11,26,23]) treat the basics of synchroniza-
tion methods, including transactional memory.

A transaction is a delimited sequence of instructions
performed as part of a program. If a transaction commits,
then all its instructions appear to have run atomically with
respect to other transactions, that is, they do not appear to
have interleaved with the instructions of other transactions.
If a transaction aborts, then none of its stores take effect,

and the transaction may be restarted from its first instruc-
tion as if it had never been run. From the programmer's
perspective, all that needs to be specified is where a
transaction begins and where it ends, and the transactional
support, whether in hardware or software, handles all the
complexities.

Under the covers of a transactional-memory system is a
collection of mechanisms, implemented in hardware or
software, which perform basic bookkeeping for the
transaction. For example, the system must have some
means to detect when two concurrent transactions
conflict: both transactions access the same shared-
memory location, and one of them attempts to modify
the location. Read=write sets of shared-memory addresses
accessed by the transaction must be maintained, so that
the transaction can be rolled back if it is aborted or
committed when it completes. These particular mechan-
isms are amply described in the literature (see, for exam-
ple [11]), and are not the focus of this paper.

This paper focuses on another under-the-covers
mechanism dubbed the contention manager [12], which
ensures that transactions complete. A contention manager

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.10.013
0306-4379/& 2016 Published by Elsevier Ltd.

☆ This research was supported in part by NSF Grant 1314547.
E-mail address: cel@mit.edu

Information Systems 57 (2016) 69–74

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.10.013
http://dx.doi.org/10.1016/j.is.2015.10.013
http://dx.doi.org/10.1016/j.is.2015.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.013&domain=pdf
mailto:cel@mit.edu
http://dx.doi.org/10.1016/j.is.2015.10.013


can be viewed as a distributed program with a module in
each transaction. The modules coordinate to ensure for-
ward progress, typically using mutual-exclusion locks,
nonblocking synchronization, and other hardware support.
When two transactions conflict, the contention manager
chooses whether one of the transactions should abort or
whether one transaction should wait for the other so that
the two transactions appear to execute in a serial order.
The contention manager ensures that the system does not
deadlock, where transactions are caught in a cycle of
waiting and cannot progress. The contention manager
ensures that the system does not livelock, where trans-
actions are repeatedly aborted and restarted without
making progress. In short, the contention manager guar-
antees that transactions make forward progress, ideally
with as little overhead as possible.

The literature is replete with contention-management
schemes, many of which can be quite complex. (See
[22,23,17,26] for overviews.) Some contention-management
strategies employ probabilistic backoff, where an aborting
transaction progressively delays its restart by increasing
amounts to avoid livelock. Other contention managers use
timestamps to ensure that the “oldest” transaction makes
progress when a conflict occurs [6,3,21]. Some contention
managers abort whichever of two conflicting transactions
has a smaller read/write set in order to minimize the
wasted work. Heuristic strategies abound, many of which —

as a last resort to guarantee forward progress if some pro-
blematic transaction aborts frequently enough — grab a
global lock and execute all transactions serially, even
transactions that are completely independent of the
problematic one.

This paper describes a simple contention-management
algorithm, called Algorithm L, which guarantees forward
progress. Before a transaction accesses a shared-memory
location, Algorithm L checks whether the access is safe,
that is, no other transaction conflicts, which makes the
algorithm eager, pessimistic, or conservative, in the var-
ied parlance of the concurrency literature, as opposed to
lazy or optimistic. (See [23] for a taxonomy of contention-
management strategies.) Although a transaction may
abort, it always completes in a bounded number of retries.
Algorithm L is deterministic and contains no probabilistic
elements, such as backoff. The algorithm can be adapted
for either hardware or software implementation.

The remainder of this paper is organized as follows.
Section 2 presents Algorithm L, and Section 3 briefly
argues its correctness. Section 4 provides a short discus-
sion of ramifications, and Section 5 concludes by surveying
antecedents in the literature.

2. Algorithm L

This section describes Algorithm L. The algorithm employs
a finite ownership array [7] lock½0.. n�1� of locks, which is a
global array accessible by all the transactions. Typically, a
contention manager of this nature needs reader/writer locks,
not just mutual-exclusion locks (mutexes), but since this issue
can be readily handled at the cost of some additional com-
plexity, let us assume for simplicity that the locks are mutexes.

It is important for the guarantee of forward progress, however,
that the locks be antistarvation (e.g., queuing). A simple spin-
lock will not do. A good discussion of locking alternatives can
be found in [18].

Before accessing a shared-memory location x, a trans-
action must acquire the lock in the ownership array
associated with x. An arbitrary many-to-one owner func-
tion h:U-f0;1;…;n�1g maps the set U of all shared-
memory locations to one of the n slots in the ownership
array. (All transactions must agree on the same owner
function h.) To acquire the lock associated with x, the
transaction may perform one of two operations:

� Acquire ðlock½hðxÞ�Þ, which blocks on the lock acquisi-
tion until the lock becomes free.

� Try�Acquire ðlock½hðxÞ�Þ, which either successfully
acquires the lock and returns the Boolean TRUE, or fails
and returns FALSE.

The finite ownership array introduces the possibility of
a false conflict, where two transactions accessing different
locations conflict by requiring the same lock, when they
would not have conflicted had the locks been on the
locations themselves. The larger the size n of the owner-
ship array, the less the chance of a false conflict. On the
other hand, larger values for n lead to weaker bounds on
the number of restarts a transaction might endure before it
completes.

Pseudocode for Algorithm L is shown in Fig. 1. Each
transaction maintains its own local set L of lock indexes,
which starts out as the empty set ∅. Whenever the
transaction encounters a new shared-memory location x, it
greedily attempts to acquire lock½hðxÞ� and add h(x) to L.
Specifically, it performs one of the following two actions:

(A) If h(x) is smaller than the largest value in L, the trans-
action aborts if the lock½hðxÞ� is held by another
transaction.

(B) If h(x) is larger than the largest value in L, the transaction
blocks if lock½hðxÞ� is taken. Once the transaction acquires
the lock, it performs the access of x.

If an abort occurs, the transaction rolls back its transac-
tional state and releases all locks with indexes larger than
h(x). It then acquires lock½hðxÞ� and reacquires in increasing
order all the locks it previously held, blocking along the
way if any of these locks is taken. The algorithm then
restarts the transaction, which once again attempts to
acquire any additional locks it needs greedily as it
encounters them.

3. Correctness

This section shows that Algorithm L avoids deadlock
and guarantees forward progress.

Lemma 1. Transactions do not deadlock.

Proof. The locks in the ownership array are linearly
ordered [8,1], and a transaction blocks on acquiring a lock

C.E. Leiserson / Information Systems 57 (2016) 69–7470



Download English Version:

https://daneshyari.com/en/article/397286

Download Persian Version:

https://daneshyari.com/article/397286

Daneshyari.com

https://daneshyari.com/en/article/397286
https://daneshyari.com/article/397286
https://daneshyari.com

