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One of the most promising applications of the methodology of imprecise probabilities in 
statistics is the reliable analysis of interval data (or more generally coarsened data). As 
soon as one refrains from making strong, often unjustified assumptions on the coarsening 
process, statistical models are naturally only partially identified and set-valued parameter 
estimators (identification regions) have to be derived.
In this paper we consider linear regression analysis under interval data in the dependent 
variable. While in the traditional case of neglected imprecision different understandings of 
regression modeling lead to the same parameter estimators, we now have to distinguish 
between two different types of identification regions, called (Sharp) Marrow Region (SMR)
and (Sharp) Collection Region (SCR) here. In addition, we propose the Set-loss Region (SR)
as a compromise between SMR and SCR based on a set-domained loss function. We 
elaborate and discuss some fundamental properties of these regions and then illustrate the 
methodology in detail by an example, where the influence of different covariates on wine 
quality, measured by a coarse rating scale, is investigated. We also compare the different 
identification regions to classical estimates from a naive analysis and from common interval 
censorship modeling.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The paper considers reliable regression analysis under interval data on the dependent variable. That is, we study the 
influence of certain covariates X (also called independent variables, explanatory variables, regressors or stimuli) on the 
response variable Y (dependent variable, outcome) under the additional difficulty that for Y only upper and lower bounds 
Y , Y are observed, such that the interval [Y , Y ] contains Y .1 This is a special case of so-called coarse(ned) data, i.e. data that 
are not observed in the resolution intended in the subject matter context (see, in particular, [26], for a discussion from a 
classical viewpoint, and, e.g., [1, Section 7.8] from an imprecise probability perspective).

Coarse data arise naturally in a big variety of situations.2 If we consider, as a particular area, survey data, then at least 
four different types of instances should be mentioned. Firstly, in the case of sensitive survey questions (like questions on 
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1 This type of data imprecision is called epistemic data imprecision, opposed to the other type called ontic data imprecision, cf. [16] and the beginning 
of Section 4.

2 For an overview of different practical situations where interval data occur very naturally, see [23].
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personal income) it is often recommended to use an a priori categorized scale instead of asking respondents for a concrete 
value, in order to avoid many refusals. Secondly, on the other hand, in the case of open questions, respondents often de 
facto provide interval-valued information only, by their tendency to heap concrete values towards certain attractive numbers 
(for the case of unemployment durations, see, e.g., [66,71]). Thirdly, coarsening information is quite a common technique 
for data protection/disclosure control, making the variables in the publicly available data sets set-valued. Fourthly, often 
rating scales (consisting of integer numbers, e.g. ranging from −3 to 3 or from 0 to 10) are used to judge the quality of 
certain goods or political actions, or to express the extent of agreement to a certain statement. Handling such scales in the 
statistical analysis as ordinal measurement procedures only may be unsatisfactory, while, on the other hand, handling each 
number as a precise metric measurement may be a sort of overshooting. A compromise could be to underly still a metric 
continuum in the background but to understand every number m on the scale as providing the interval-valued information 
[m − 0.5, m + 0.5]. Indeed, our data set in Section 6 is of that type when we study the influence of certain covariates on the 
rated quality of red wine.

When handling coarse data, classical statistical approaches, by their inherent confinement to precise models and results, 
are damned to escape the data imprecision somewhere in the analysis. A direct, first way is to represent every interval 
by a certain precise value, typically the mid-point of the corresponding interval, and then to perform a standard analysis 
based on these fictitious values (cf. also Section 6.3 below). More sophisticated classical approaches try to model the coars-
ening process, either explicitly or by presupposing situations where the coarsening can be incorporated directly into the 
likelihood3 (see also the discussion of the (non-informative) interval censorship model in Section 6.4).

However, such a way to proceed requires strong additional assumptions that quite often are not supported by substantive 
arguments. In the last decade in statistics and econometrics awareness has been growing that this price to pay for the 
seemingly precise results is too high. Adding unjustified assumptions undermines the credibility of the conclusions, and 
therefore nothing less than the practical relevance of the statistical analysis.4 Thus, a paradigmatic shift is taking place, 
appreciating the extent of imprecision as a constitutive element of statistical analysis, and stressing the importance to 
develop approaches that, by reflecting the underlying imprecision in the data properly, grant reliability of the conclusions. 
Quite often the imprecise results are still unambiguous enough to give a – now profound – answer to the underlying 
substantive science questions, and, moreover, in the case of an ambiguous result the scientist has learned that without 
further external information any stronger conclusion drawn from the data may be a mere artefact.

Against this background, in different areas of application, related approaches, basically considering all possible precise 
data compatible with the observed set of values, have emerged almost independently. They include the approach to reliable 
descriptive statistics in social sciences proposed in [47, Chapter 17f] (see also [46]), the analysis of fuzzy data (see, e.g., [20]) 
and concepts of reliable computing and interval analysis in the engineering sciences (see, e.g., [43]). This cautious processing 
of sets of precise data points is also of importance in generalized Bayesian inference (e.g., [18,73]) and is closely related to 
the (profile-)likelihood approach for set-valued data developed by [74] and [10]. Moreover, it can be embedded into the 
methodologies of partial identification and systematic sensitivity analysis (see, in particular, [36,64] and [70], respectively), 
which provide a general framework for observationally equivalent statistical models arising for instance from coarse data. 
Instead of single-valued parameters one obtains so-called identification regions, i.e. sets of all parameters compatible with 
the data and the modeling assumptions maintained. Further developments in that area include work on corresponding 
confidence region procedures (see, e.g., [7,42,8]), improvements with respect to computational feasibility (e.g., [11,2,62,
53]), and extensions to generalized correction methods for misclassification [40,32]. Selected applications include [44]’s 
study of income poverty measures based on coarsened survey data, [33]’s use of register data to evaluate the German 
unemployment compensation reform and [60,41,58]’s investigation of treatment effects in observational studies. In another 
direction, approaches aiming at “most committed regions” containing at least a prespecified percentage of the data can be 
found in e.g., [49] or [54]. Proper handling of coarse data is also a prominent topic on ISIPTA conferences, see, e.g., the 
contributions by [27,72,68,61,69,10].

The present paper tries to contribute to the vivid discussion how to deal with interval data in the response variable of 
linear regression models. It is organized as follows. After some basic definitions in Section 2 detailing the framework we are 
working in, we illustrate in Section 3 the importance to be very careful which modeling assumptions exactly one is ready 
to maintain when working in the generalized framework of partial identification. In contrast to traditional linear regression 
analysis it makes a substantial difference whether or not one takes the model relationship as the indeed truly underlying 
structure (the “marrow” in the parlance below). One approach would indeed rely on the assumption that the conditional 
expectation of the response variable is exactly a linear function of the covariates. Opposed to this, another approach would 
be to understand the linear model merely as an auxiliary means to guide the predictions of responses given covariates. 
Then it is only assumed that a prediction that is linear in the covariates could approximate the conditional expectations 
of the response variable well enough. In the traditional context the estimators arising from both ways of modeling directly 
coincide in the least squares estimator. In the extended setting, however, two different types of identification regions have 
to be distinguished (cf. also [45]), called Sharp Marrow Region (SMR) and Sharp Collection Region (SCR), respectively here. The 
latter, arising from collecting all predictions based on all possible values compatible with the interval information, naturally 

3 For the background, see, in particular, [26], extending Little and Rubin’s [35] classification of missing data mechanisms to coarsening.
4 Compare also Manski’s Law of Decreasing Credibility [36, p. 1].
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