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In the paper we investigate the criteria of choosing generalized Dempster–Shafer rules for 
aggregating sources whose information is represented by belief functions. The approach 
is based on measuring various types of uncertainty in information and we use for this 
purpose in particular linear imprecision indices. Some results concerning properties of such 
rules are also presented.
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1. Introduction

In the literature there are many generalizations of Dempster–Shafer (D–S) rule, see for instance [20]. Many of them [23,
14,18] were the answer to the critique of this combination rule by Zadeh [24]. In this paper we support the idea of Smets 
[22], in which the whole family of rules of combination is divided on various types like conjunctive and disjunctive rules, 
and the optimal rule should be chosen according to each application. Many critiques [18,19] also concern the case when 
sources of information are conflicting1 (or contradictory) and the measure of contradiction of two sources of information 
based on D–S rule is not adequate. There are also works, see for example [1], where you can find argumentation that the 
classical D–S rule is not justified in probability theory.

In this paper we investigate the generalized Dempster–Shafer (GD–S) rules that were firstly introduced by Dubois and 
Yager [15], where each GD–S rule is defined as follows. In the D–S theory each source of information can be described 
by a random set. If we assume that two sources of information are independent, then we get the D–S rule by taking the 
intersection of these two sets. In GD–S rules the joint probability distribution of random sets is not known and the choice of 
the rule can be based on the least commitment principle [10], the principle of the minimal contradiction between sources 
of information [4] and others [11,12,5]. Some authors try to define combination rules for dependent sources of information 
to preserve the associativity. In [8] Denoeux proposes conjunctive combination of belief functions for dependent sources 
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of information. This rule uses the special representation of bodies of evidences, and guarantees the associativity, but this 
rule can give sometimes strange results (see for example Proposition 7 in [8]). The associativity is also guaranteed for 
combination rules proposed by Cattaneo [5]. Notice that these rules are not GD–S rules which are the subject of our article.

In the paper we thoroughly investigate and generalize well-known approaches of choosing GD–S rules and find their
probabilistic interpretation. We come to the conclusion that any GD–S rule can be conceived as an approximation from 
above of two belief functions by using the partial order on belief functions usually called specialization. Using this order 
we propose several approaches to find such approximations that generalize well-known ones. The paper has the following 
structure. We introduce first the basic notions of D–S theory, and how the D–S rule of combination can be generalized. In 
Section 3 we analyze what kind of uncertainty are described by belief functions and remind the justified functionals for 
measuring uncertainty. Based on this analysis, one can make a conclusion that non-normalized belief functions can describe 
three types of uncertainty: conflict, non-specificity and contradiction. The last type of uncertainty is due to a strictly positive 
mass of the empty set. In Section 4 we introduce imprecision indices for measuring non-specificity which are later used 
for defining optimization problems for choosing GD–S rules in Section 6. In Section 5 we remind about the specialization 
order on belief functions and give also some of its properties. In Section 6 we prove Theorem 2 that shows how an optimal 
choice of GD–S rule can be formulated with the help of this order. Section 7 is devoted to analyzing properties of measuring 
contradiction by the classical D–S rule and by GD–S rules. One can come to the conclusion that measuring contradiction 
between sources of information based on GD–S rules is more justified than by using the classical D–S rule because it has 
clearer probabilistic interpretation. In Section 8 we give properties of optimal GD–S rules or rather of Pareto optimal GD–S 
rules w.r.t. the order of specialization. Because the solution of the optimization problem can be not unique, the result of 
applying optimal GD–S rules can be conceived as a subset of belief measures. This implies that it is necessary to investigate 
other possible ways of evaluating GD–S rules quality. For example, according to Theorem 2, an optimal GD–S rule should 
give the best approximation from above of the maximum of combining belief functions. This idea is exploited in Section 9, 
where we show that the choice of an optimal GD–S rule is equivalent to the choice of GD–S rule based on the special linear 
imprecision index if we use some metric on the set of belief functions. Other idea is used in Section 10, where we try to 
analyze the contradiction of the chosen Pareto optimal rule to other possible choices.

2. Evidence theory and generalized Dempster–Shafer rules

Let X be a finite set and let 2X be the powerset of X . One can say that the body of evidence is given on 2X if a non-
negative set function m : 2X → [0, 1] is defined with 

∑
A∈2X m(A) = 1. Through the body of evidence the following functions 

are also introduced Bel(B) = ∑
A⊆B m(A), Pl(B) = ∑

A∩B �=∅ m(A), which are called belief function and plausibility function re-
spectively. The function m is usually called the basic belief assignment (bba). We accept here the transferable belief model [22], 
where m(∅) = Bel(∅) shows the degree of contradiction in information. If the contradiction in information is equal to zero, 
then the corresponding belief function is called normalized. In the next we will use the following notations and definitions.

(1) A set A ∈ 2X is called focal if m(A) > 0.
(2) A belief function is called categorical if the body of evidence contains only one focal element B ∈ 2X . This belief function 

is denoted by η〈B〉 and obviously η〈B〉(A) =
{

1, B⊆A,

0, otherwise.
Using categorical belief functions, we can express any belief 

function by the formula Bel = ∑
B∈2X m(B)η〈B〉 .

(3) A belief measure is called a probability measure if m(A) = 0 for |A| > 1.2

(4) We denote correspondingly by M̄bel and M̄pr the families of all belief functions and probability measures on 2X , and if 
these families are normalized we denote them by Mbel and Mpr .

(5) For any set functions μ1, μ2 on 2X we write μ1 � μ2 if μ1(A) � μ2(A) for all A ∈ 2X .

Let us consider the probabilistic interpretation of the transferable belief model based on random sets. A random set ξ
is a random variable taking its values in 2X . Any such random variable can be defined by probabilities P (ξ = A) being 
identified with values m(A) in the theory of evidence. Given two random sets ξ1 and ξ2 with values in 2X , if we assume 
that these random sets are independent, then

P (ξ1 = A, ξ2 = B) = P (ξ1 = A)P (ξ2 = B).

Dempster proposes to aggregate these sources of information by a new random set ξ defined by

P (ξ = C) =
∑

A∩B=C

P (ξ1 = A, ξ2 = B).

Let us notice that if we assume that the sources of information are independent,3 then we get the original D–S rule defined 
by:

2 Here we allow that a probability measure P may be non-normalized. In this case P (∅) > 0.
3 Recently Nakama and Ruspini in [21] soften the independence requirement in D–S rule by changing it to the conditional independence to sharing 

knowledge, but we will not discuss this approach in our paper.
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