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Methods for analyzing or learning from “fuzzy data” have attracted increasing attention in
recent years. In many cases, however, existing methods (for precise, non-fuzzy data) are
extended to the fuzzy case in an ad-hoc manner, and without carefully considering the
interpretation of a fuzzy set when being used for modeling data. Distinguishing between
an ontic and an epistemic interpretation of fuzzy set-valued data, and focusing on the
latter, we argue that a “fuzzification” of learning algorithms based on an application of
the generic extension principle is not appropriate. In fact, the extension principle fails to
properly exploit the inductive bias underlying statistical and machine learning methods,
although this bias, at least in principle, offers a means for “disambiguating” the fuzzy data.
Alternatively, we therefore propose a method which is based on the generalization of loss
functions in empirical risk minimization, and which performs model identification and data
disambiguation simultaneously. Elaborating on the fuzzification of specific types of losses,
we establish connections to well-known loss functions in regression and classification. We
compare our approach with related methods and illustrate its use in logistic regression for
binary classification.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The learning of models from imprecise data, such as interval data or, more generally, data modeled in terms of fuzzy
subsets of an underlying reference space, has gained increasing interest in recent years [4,6,7,23,30]. Indeed, while problems
such as fuzzy regression analysis [2,8,9,12,13,27] have already been studied for a long time, the scope is currently broaden-
ing, both in terms of the problems tackled (e.g., classification, clustering, ranking) and the uncertainty formalisms used (e.g.,
probability distributions, histograms, intervals, fuzzy sets, belief functions).

Needless to say, learning from imprecise and uncertain data also requires the extension of corresponding learning al-
gorithms. Unfortunately, this is often done without clarifying the actual meaning of an uncertain observation, although
representations such as intervals or fuzzy sets can obviously be interpreted in different ways. In particular, an ontic inter-
pretation of (fuzzy) set-valued data should be carefully distinguished from an epistemic one [10]. This difference is reflected,
for example, in different approaches to fuzzy statistics, where fuzzy random variables can be formalized in an epistemic
[17–19] as well as an ontic way [21]; see [5] for a comparison of these views in this context. Surprisingly, however, the fact
that these two interpretations also call for very different types of extensions of existing learning algorithms and methods
for data analysis seems to be largely ignored in the literature.

Under the ontic view, a variable can assume a fuzzy set as its “true value”; for example, one may argue that assigning a
precise value to the variable “daily sunshine duration” is not very meaningful, and that a specification of sunshine durations
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Table 1
Summary of the main notation used throughout the paper.

Notation Meaning

zi , (xi , yi) (precise) data point, input/output sample
ẑi , ŷi (precise) prediction/estimator
Zi , Xi , Yi sets or fuzzy sets (imprecise/fuzzy data)

Z , X ,Y data space, input space, output space
F(Z) class of fuzzy subsets of Z
D, D sample of (precise) data points, class of potential samples
D sample of imprecise/fuzzy data
INS(D) set of instantiations of D

L(y, ŷ) loss function, loss caused by ŷ when compared to y
L(Y , ŷ) loss caused by ŷ when compared to set Y
L(Y , ŷ) loss caused by ŷ when compared to fuzzy set Y
M , M model, model space
R, Remp risk, empirical risk
Remp aggregated (empirical) risk
rM risk function mapping levels α ∈ (0,1] to risk values

in terms of intervals or fuzzy sets is more appropriate. This interpretation suggests the learning of models that produce
fuzzy sets as predictions, that is to say, models that reproduce the observed data. As opposed to this, a reproduction of
the data appears less reasonable under the epistemic view, where fuzzy sets are used to describe, not the data itself, but
the uncertain or imprecise knowledge about the data: A fuzzy set defines a possibility distribution that specifies a degree
of plausibility for each potential precise value. As we shall explain in more detail later on, one should then rather try to
“disambiguate” the data instead of reproducing it.

The possibilistic interpretation of fuzzy sets in the epistemic case, that we focus on in this paper, naturally suggests a
“fuzzification” of learning algorithms based on an application of the generic extension principle [1,31]. As we shall argue,
however, this approach is not appropriate and prone to fail in the context of data analysis. The main reason, to be detailed
in Section 3, is a lack of differentiation between the possible data instantiations (i.e., the instantiation of each imprecise
observation by a precise value). Such a differentiation, however, is typically suggested by the model assumptions through
which the learning algorithm justifies its generalization beyond the data observed.

This idea of differentiating between instantiations of the data leads us to the notion of “data disambiguation” that we
already mentioned above: When learning from imprecise data under the epistemic view, model identification and data disambigua-
tion should go hand in hand. To this end, we propose an approach based on the generalization of loss functions in empirical
risk minimization.

The rest of the paper is organized as follows. In the next section, we introduce the basic setting that we consider
and the main notation that we shall use throughout the paper (see Table 1 for a summary). In Section 3, we explain the
aforementioned problems caused by the use of the extension principle and elaborate on our idea of data disambiguation.
Our new approach to learning from fuzzy data based on generalized loss functions is then introduced in Section 4. Section 5
is devoted to a comparison with an alternative and closely related method that was recently introduced by Denoeux [6,7].
In Section 6, we illustrate our approach on a concrete learning problem. Finally, we conclude with a summary and some
additional remarks in Section 7.

2. Notation and basic setting

We consider the problem of model induction, which, roughly speaking, consists of passing from a specific data sample to
a general (though hypothetical) model describing the data-generating process or at least certain properties of this process.
In this setting, a learning (data analysis) algorithm ALG is given as input a set

D = {zi}N
i=1 ∈ ZN (1)

of data points zi ∈ Z . As output, the algorithm produces a model M ∈ M, where M is a predefined model class. Formally,
the algorithm can hence be seen as a mapping

ALG : D → M, (2)

where D is the space of potentially observable data samples. For instance, the data points might be vectors in Z = R
d ,

and the model could be a partitioning of the data into a finite set of disjoint groups (clusters). Or, the model could be a
probability density function characterizing the underlying data-generating process. In fact, the data points zi are typically
assumed to be independent and identically distributed (i.i.d.) according to an underlying (though unknown) probability
distribution. Moreover, the model class M is often parameterized, which means that each model M ∈ M is uniquely identified
by a parameter θ ∈ Θ (in other words, there is a bijection between the model space M and the parameter space Θ).
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