
Case-based adaptation of workflows

Mirjam Minor a,n, Ralph Bergmann b, Sebastian Görg b

a Goethe University Frankfurt, Department of Business Information Systems, D-60325 Frankfurt, Germany
b University of Trier, Department of Business Information Systems, D-54286 Trier, Germany

a r t i c l e i n f o

Available online 23 December 2012

Keywords:

Workflow management

Adaptation

Case-based reasoning

a b s t r a c t

This paper presents on a Case-based Reasoning approach for automated workflow

adaptation by reuse of experience. Agile workflow technology allows structural adapta-

tions of workflow instances at build time or at run time. The approach supports the

expert in performing such adaptations by an automated method. The method employs

workflow adaptation cases that record adaptation episodes from the past. The recorded

changes can be automatically transferred to a new workflow that is in a similar situation

of change. First, the notion of workflow adaptation cases is introduced. The sample

workflow modeling language CFCN is presented, which has been developed by the

University of Trier as a part of the agile workflow management system Cake. Then, the

retrieval of adaptation cases is briefly discussed. The case-based adaptation method is

explained including the so-called anchor mapping algorithm which identifies the parts of

the target workflow where to apply the changes. A formative evaluation in two

application domains compares different variants of the anchor mapping algorithm by

means of experts assessing the results of the automated adaptation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Workflows are a well-established concept to formalize
business processes and support their execution by a
workflow management system. Workflows are ‘‘the auto-
mation of a business process, in whole or part, during
which documents, information or tasks are passed from
one participant to another for action, according to a set of
procedural rules’’ [41]. While early workflow manage-
ment systems put their focus mainly on production work-
flows, additional application fields like financial services,
telecommunications, the public sector and even creative
areas like media industry or nutrition services are
addressed by workflow technology today [32]. With the
changing requirements in this wide range of areas,

we identified a research gap for more flexibility support
of workflows at run time as described in the following.

In traditional workflow management systems, work-

flow definitions (also called workflow templates or process
models) are created at build time. The basic constituents
of workflow definitions are tasks that describe an activity
to be performed by an automated service (e.g. within a
service-oriented architecture) or a human (e.g. an
employee). The procedural rules to control the tasks are
usually described by routing constructs like sequences,
loops, parallel and alternative branches that form the
control flow of the tasks. Documents and information are
represented by data objects; the relationships between
data objects and tasks form the data flow. Workflow

instances (in short workflows) are derived from the work-
flow definitions to be enacted, i.e., to be scheduled for
execution within a workflow engine of the workflow
management system.

A significant limitation of traditional workflow tech-
nology is the missing flexibility of the workflow concept
and the lack of flexibility of workflow engines. Once

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.11.011

n Corresponding author. Tel.: þ49 69 798 24636.

E-mail addresses: minor@informatik.uni-frankfurt.de (M. Minor),

bergmann@uni-trier.de (R. Bergmann), goergs@uni-trier.de (S. Görg).

Information Systems 40 (2014) 142–152

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.11.011
dx.doi.org/10.1016/j.is.2012.11.011
dx.doi.org/10.1016/j.is.2012.11.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.11.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.11.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.11.011&domain=pdf
dx.doi.org/10.1016/j.is.2012.11.011


described, workflow definitions are instantiated repeat-
edly and the instances are executed in the same manner
over a long period of time. However, changes of ongoing
work are quite common in areas like media industry or
telecommunication. In order to address today’s require-
ments concerning easy and fast adaptation of workflows,
a new class of workflow systems has been emerging since
the late Nineties: Adaptive workflow systems (also called
agile workflow systems) [30,37,36,25,31] facilitate struc-
tural changes of workflows at run time. Workflow
instances can be created (for example based on a work-
flow definition from a repository [9]) and tailored for a
particular demand or business case. Workflow instances
can still be adapted after they have been started, for
example if some unforeseen events occur [39]. Currently,
adaptive workflow technology has reached such a degree
of maturity that the adaptive workflow systems are about
to be transferred into practice.1 Hence, the creation and
adaptation of workflows has now become an important
activity to enable the flexibility of business processes.
Though, in real-world scenarios both are nontrivial mod-
eling tasks for which intelligent support is needed.

We put forward the hypothesis that supporting the
users ‘‘by sample’’, i.e., by retrieving and automatically
transferring past modifications, alleviates the creation
and adaptation of workflow instances during their entire
life-cycle. Case-based Reasoning (CBR) [1] is a problem-
solving technology that facilitates the reuse of experience
in form of cases. A case records a problem situation
together with the experiences gained during a problem-
solving episode, which includes a solution. CBR provides
techniques for representing, storing, indexing, retrieving,
and adapting cases. Instead of composing new solutions
from scratch, retrieved cases or portions of cases can be
reused. We assume that workflow modeling experts who
are faced with the problem of how to adapt a workflow
instance benefit from solutions and experiences from
similar problem situations in the past. The paper
addresses a case-based approach supporting the adapta-
tion of workflow instances by automated workflow retrie-
val and adaptation at build time and run time. This is a
contribution towards more flexibility support in workflow
management.

The paper is organized as follows. Section 2 gives
a brief introduction into agile workflow technology.
In Section 3, we present a representation form for adapta-
tion knowledge called adaptation cases. Section 4 is on an
automated method for workflow adaptation. In Section 5,
we provide evaluation results. Section 6 contains a dis-
cussion of related work. Finally, we draw a conclusion in
Section 7.

2. Agile workflow technology

Agile workflow technology is the technical prerequi-
site for adaptation support at run time. We will briefly

introduce its core concepts before we deal with the actual
adaptation methods. Agile workflow technology addresses
structural changes of workflow instances at run time. The
changes apply to workflow elements, i.e., to atomic parts of
the workflow. The types of workflow elements depend on
the workflow modeling language. In case of Petri Nets [33],
for instance, the types would be places, transitions, and
connections while in BPMN [13] they might be activities,
gateways, events, connecting objects, and artifacts. The
workflow adaptation is carried out by deleting, modifying,
or adding one or several workflow elements, or by changing
the order of elements.

Two types of structural changes at run time are con-
sidered in the approach (for a more detailed discussion of
change patterns see [39]): Ad hoc changes occur unexpect-
edly at any time. The workflow elements that will be
affected by the change are not known in advance. For
instance, a device might be disabled accidentally during a
software update process. The workflow supporting the
software update process might be adapted by inserting a
task for the re-installation of the driver. In contrast to ad
hoc changes, late modeling refers to structural changes that
are projectable to some extent. It is known when the time
for the modification will come, but it is not fully foresee-
able which workflow elements will be affected. For exam-
ple, a customer might require to test several variants of a
product component before making the decision which
variant should actually go into the production process. As
a consequence of the decision, the product development
process might require changes like further tests or mod-
ified integration activities.

We use the Cake Flow Cloud Notation (CFCN, compare
[28]) as a sample modeling language to illustrate the work.
It has been developed in recent research project at the
University of Trier [28,11]. It is a part of the Collaborative
Agent-based Knowledge Engine (Cake) [4,26]. Cake provides
modeling and enactment support for agile workflows. CFCN
consists of several types of workflow elements. A CFCN
workflow element can be a task, a data object, a data link
(from a data object to a task or vice versa), a start element, an
end element, a breakpoint, or a control flow element like an
AND-split, AND-join, XOR-split, XOR-join, LOOP-split, or
LOOP-join. The control flow elements border block-oriented
control flow structures (AND-block, XOR-block, etc.). Blocks
cannot be interleaved but they can be nested. For example,
the software update workflow depicted in Fig. 1 (I) has the
following workflow elements: A start element, an AND-split
and AND-join bordering two tasks ‘‘Evaluate updates’’ and
‘‘Plan update release’’, a further task ‘‘Deploy updates’’, and an
end element. In part (II) of Fig. 1, an ad hoc change is started
by setting a breakpoint. The breakpoint suspends the sub-
sequent workflow elements from execution, so that only the
lower branch of the AND-block with the task ‘‘Plan update
release’’ can continue execution, while the upper branch is
under construction. In part (III), an additional task ‘‘Re-install
driver’’ has been inserted. Finally, in part (IV), the breakpoint
has been deleted again and the upper branch of the AND-
block can continue execution. Each workflow element has a
unique identifier (ID) and – except for data objects and data
links – an execution state. For instance, the execution state
‘‘ACTIVE’’ is assigned to elements that have already started

1 See http://www.aristaflow.com for a commercial sample of an adap-

tive workflow system and http://www.uni-trier.de/index.php?id=21075 for

a research prototype.

M. Minor et al. / Information Systems 40 (2014) 142–152 143

http://www.aristaflow.com
http://www.uni-trier.de/index.php?id=21075


Download English Version:

https://daneshyari.com/en/article/397380

Download Persian Version:

https://daneshyari.com/article/397380

Daneshyari.com

https://daneshyari.com/en/article/397380
https://daneshyari.com/article/397380
https://daneshyari.com

