
Automatic case acquisition from texts for process-oriented
case-based reasoning

Valmi Dufour-Lussier a,b,c,n, Florence Le Ber d, Jean Lieber a,b,c, Emmanuel Nauer a,b,c

a Université de Lorraine, LORIA, UMR 7503 — Vandœuvre-l�es-Nancy F-54506, France
b CNRS, LORIA, UMR 7503 — Vandœuvre-l�es-Nancy F-54506, France
c Inria — Villers-l�es-Nancy F-54602, France
d ICUBE Université de Strasbourg/ENGEES, CNRS —Strasbourg F-67000, France

a r t i c l e i n f o

Available online 20 December 2012

Keywords:

Automatic case acquisition

Information extraction

Natural language processing

Process-oriented case-based reasoning

Textual case-based reasoning

Workflow generation

a b s t r a c t

This paper introduces a method for the automatic acquisition of a rich case representa-

tion from free text for process-oriented case-based reasoning. Case engineering is among

the most complicated and costly tasks in implementing a case-based reasoning system.

This is especially so for process-oriented case-based reasoning, where more expressive

case representations are generally used and, in our opinion, actually required for

satisfactory case adaptation. In this context, the ability to acquire cases automatically

from procedural texts is a major step forward in order to reason on processes. We

therefore detail a methodology that makes case acquisition from processes described as

free text possible, with special attention given to assembly instruction texts. This

methodology extends the techniques we used to extract actions from cooking recipes.

We argue that techniques taken from natural language processing are required for this

task, and that they give satisfactory results. An evaluation based on our implemented

prototype extracting workflows from recipe texts is provided.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper introduces a method for the automatic
acquisition of a rich case representation from free text
for process-oriented case-based reasoning. Case-based
reasoning (CBR) [1] is a reasoning paradigm used to solve
problems by retrieving similar problem–solution pairs
from a case base and adapting the solutions. Because case
engineering is a complicated and costly process, auto-
matic case acquisition from text has been a major focus of
research in the last 15 years. Methods used in textual CBR
vary widely in their scope and their use of natural

language processing (NLP) methods, depending on the
intended applications. At one end of the spectrum, a text
is seen as a bag-of-words and is mostly represented as a
term vector. Weights are assigned according to the
relative frequency of the terms in a text versus its
frequency in all the texts of the case base, possibly taking
synonymy into account. This method does not allow for
sophisticated inferences, such as adaptation of highly
structured cases, taking into account domain knowledge.
At the other end, Gupta and Aha [2] propose using a full-
fledged NLP solution to translate free text into predicate
logic. While such a system would indeed allow for very
sophisticated adaptation (including, if combined with a
natural language generation system, unlimited possibili-
ties in terms of textual adaptation), existing NLP systems
translating from text to logic are far from being accurate.

In this paper, we argue in favour of using limited NLP
techniques to extract, from procedural texts, the verbs,
their complements and their relevant modifiers, in order

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.11.014

n Corresponding author at: Université de Lorraine, LORIA, UMR 7503

— Vandœuvre-l�es-Nancy F-54506, France. Tel.: þ33 3 54 95 86 43;

fax: þ33 9 57 92 62 82.

E-mail addresses: valmi.dufour@loria.fr (Dufour-Lussier),

florence.leber@engees.unistra.fr (F. Le Ber),

jean.lieber@loria.fr (J. Lieber), emmanuel.nauer@loria.fr (E. Nauer).

Information Systems 40 (2014) 153–167

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2012.11.014
http://dx.doi.org/10.1016/j.is.2012.11.014
http://dx.doi.org/10.1016/j.is.2012.11.014
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.11.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.11.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.11.014&domain=pdf
mailto:valmi.dufour@loria.fr
mailto:florence.leber@engees.unistra.fr
mailto:jean.lieber@loria.fr
mailto:emmanuel.nauer@loria.fr
http://dx.doi.org/10.1016/j.is.2012.11.014


to acquire rich case representations for processes. We
are more open to linguistic-inspired techniques than
approaches to textual CBR based on information retrieval
and even information extraction. By limiting ourselves to
procedural texts (an important but not very varied type of
text) and trying to extract only domain-relevant meaning
from it, we are able to achieve encouraging results.
The approach presented herein is a generalisation of our
previous work in defining a case representation for recipes
and implementing software to acquire cases automatically
from a recipe book [3,41]. This domain shows numerous
examples where case representations richer than a vector
space and NLP are a necessity.

Some background knowledge is required to under-
stand certain choices made in designing this extraction
process. This is introduced briefly in Sections 2 and 3.
Section 2 presents two formalisms that are used in
process case representations: workflows and qualitative
algebras. Some shortcomings of both are pointed out,
which justifies making sure that the proposed method
can extract both workflows and qualitative constraints
from text. Additionally, two running examples are intro-
duced: a cooking recipe and a scientific experimental
protocol. Section 3 presents different usages that are
expected for the case representation, and shows which
effect they have on the extraction process. More specifi-
cally, two approaches for textual case adaptation are
presented: one based on ‘‘grafting’’, and one based on
belief revision theory.

Section 4 is the core of the paper. It describes in detail
the process through which case representations are
extracted from texts. A text is analysed in many passes.
All but the last we use implement fairly typical NLP
methods, and are detailed in Section 4.1. The last one,
introduced in Section 4.2, is an anaphoric reference solver

that we designed specifically for procedural texts. Section
4.3 explains how a structured case representation is
engineered from the information extracted in the pre-
vious steps. This is sufficient to allow for adaptation of the
formalised cases, but additional concerns that must be
kept it mind to facilitate the reuse of the actual text are
introduced in Section 4.4. All the examples in this section
come from recipes, but we show in Section 4.5 that the
method presented is applicable to different types of texts
by applying them to the scientific protocol.

Section 5 presents a first evaluation of the extraction
process by comparing the case representations obtained
automatically against a gold standard. Sections 6 and 7
finally discuss related and future work.

2. Formalisms for process representation

The most important method used to model cases
representing processes is workflows. For instance, all the
papers presented at the first Process-oriented Case-based
Reasoning workshop [4] were based on workflows, except
two, that used workflow-like graphs. Workflows effi-
ciently model the actions required to complete a process:
a workflow defines a partial order over the actions and
offers the possibility to express options (disjunctions),
simultaneity (conjunctions) and repetition of actions
(loops). There exist different formal languages in which
workflow knowledge can be represented. In this paper,
UML Activity Diagrams are used.

The most basic control flow structure is the sequence
(shown in Fig. 1a), which means that a task B is ready to
begin execution as soon as a task A is finished. Other
control statements are the fork, indicating the concurrent
execution of workflows, the join, synchronising them, the
decision, leading to the exclusive execution of one work-
flow from a set, and the merge, ending such a conditional
execution [5]. The fork and join control statements are
used to create a conjunction control structure (Fig. 1b),
while the decision and merge statements can be used to
create either a disjunction (Fig. 1c) or a loop structure
(Fig. 1d).

Workflows have some limitations, apparent in the
representation of the biochemistry procedure shown in
Fig. 2. Temporal aspects that are important in certain

Fig. 1. Workflow patterns: (a) sequence; (b) conjunction; (c) disjunction;

and (d) loop.

Fig. 2. Excerpts from a scientific experimental protocol for preparing zymosan [6].

V. Dufour-Lussier et al. / Information Systems 40 (2014) 153–167154



Download English Version:

https://daneshyari.com/en/article/397381

Download Persian Version:

https://daneshyari.com/article/397381

Daneshyari.com

https://daneshyari.com/en/article/397381
https://daneshyari.com/article/397381
https://daneshyari.com

