
Simplifying discovered process models in a
controlled manner

Dirk Fahland n, Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands

a r t i c l e i n f o

Available online 25 July 2012

Keywords:

Process mining

Model simplification

Petri nets

Branching processes

a b s t r a c t

Process models discovered from a process log using process mining tend to be complex

and have problems balancing between overfitting and underfitting. An overfitting

model allows for too little behavior as it just permits the traces in the log and no other

trace. An underfitting model allows for too much behavior as it permits traces that are

significantly different from the behavior seen in the log. This paper presents a post-

processing approach to simplify discovered process models while controlling the

balance between overfitting and underfitting. The discovered process model, expressed

in terms of a Petri net, is unfolded into a branching process using the event log.

Subsequently, the resulting branching process is folded into a simpler process model

capturing the desired behavior.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Information systems are becoming more and more
intertwined with the operational processes they support.
While supporting these processes, multitudes of events
are recorded, cf. audit trails, database tables, transaction
logs, data warehouses. The goal of process mining is to use
such event data to extract process-related information.
The most prominent problem of process mining is process

discovery, that is, to automatically discover a process
model by observing events recorded by some information
system. The discovery of process models from event logs
is a relevant, but also challenging, problem [1–3].

Input for process discovery is a collection of traces.
Each trace describes the life-cycle of a process instance
(often referred to as case). Output is a process model
that is able to reproduce these traces. The automated
discovery of process models based on event logs helps to
jump-start process improvement efforts and provides an
objective up-to-date process description. There are two

other kinds of process mining. Process extension extends a
given (handmade or discovered) process model with
information from the log, for instance, by projecting a
log on a discovered model to show bottlenecks and
deviations. Conformance checking is the problem of mea-
suring how well a handmade or discovered process model
describes behavior in a given log [1].

The main problem of process discovery from event logs
is to balance between overfitting and underfitting. A model
is overfitting if it is too specific, i.e., the example behavior
in the log is included, but new instances of the same
process are likely to be excluded by the model. For
instance, a process with 10 concurrent activities has
10!¼3,628,800 potential interleavings. However, event
logs typically contain fewer cases. Moreover, even if there
are 3,628,800 cases in the log, it is extremely unlikely that
all possible variations are present. Hence, an overfitting
model (describing exactly these cases) will not capture the
underlying process well. A model is underfitting when it
over-generalizes the example behavior in the log, i.e., the
model allows for behaviors very different from what was
seen in the log. Process discovery is challenging because (1)
the log typically only contains a fraction of all possible
behaviors, (2) due to concurrency, loops, and choices the
search space has a complex structure, and (3) there are no

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.07.004

n Corresponding author. Tel.: þ31 40 2474804.

E-mail addresses: d.fahland@tue.nl (D. Fahland),

w.m.p.v.d.aalst@tue.nl (W.M.P. van der Aalst).

Information Systems 38 (2013) 585–605

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.07.004
dx.doi.org/10.1016/j.is.2012.07.004
dx.doi.org/10.1016/j.is.2012.07.004
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.07.004&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.07.004&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.07.004&domain=pdf
mailto:d.fahland@tue.nl
mailto:w.m.p.v.d.aalst@tue.nl
dx.doi.org/10.1016/j.is.2012.07.004


negative examples (i.e., a log shows what has happened but
does not show what could not happen) [1,3].

A variety of approaches has been proposed to address
these challenges [1,2]. Technically, all these approaches
extract ordering constraints on activities which are then
expressed as control-flow constructs in the resulting
process model. Provided that enough event data are
available and variability is low, today’s approaches are
able to discover the underlying process adequately. How-
ever, processes with more variability are more difficult to
discover and numerous approaches have been proposed
to deal with this.

Several approaches try to abstract from infrequent beha-

vior and construct models that capture only the ‘‘highways’’
in processes. Examples are heuristic mining1 [4], fuzzy
mining [5], and genetic process mining [6]. The resulting
models are relatively simple, but may not be able to
reproduce all traces seen in the log. These techniques exploit
the fact that for many processes the so-called ‘‘80/20-rule’’
holds, i.e., 80% of the observed cases can be explained by 20%
of the paths in the process whereas the remaining 20% of
cases is responsible for 80% of the variability. Although the
techniques proposed in [4–6] can simplify models, parts of
the event log are no longer explained by the model and the
model is often not executable because split-join behavior is
either unspecified (fuzzy mining) or implicit (heuristic
mining and genetic process mining) [7].

Other approaches try to deal with variability by con-

structing an over-general model. Instead of leaving out
infrequent behavior, everything is allowed unless there
is strong evidence that it is not possible. This can easily be
understood in terms of a Petri net. A Petri net with
transitions T and without any places can reproduce any
event log over a set of activities T. Adding a place to a Petri
net corresponds to adding a constraint on the behavior.
Techniques based on language-based regions [8,9] use this
property. For example, as shown in [9] it is possible to
solve a system of inequations to add places that do not
inhibit behavior present in the event log. In [10], an
approach based on convex polyhedra is proposed. Here
the Parikh vector of each prefix in the log is seen as a
polyhedron. By taking the convex hull of these convex
polyhedra one obtains an over-approximation of the
possible behavior. In [11], the authors resort to the use
of OR-splits and OR-joins to create an over-general model
that guarantees that all traces in the log can be repro-
duced by the model. Surprisingly, these over-general
process models tend to be convoluted as illustrated by
Figs. 1 and 2.

In [12] an approach to balance overfitting and underfitting
is proposed. First, a transition system is constructed from the
log; the user may balance generalization by influencing how
states are generated from the log. Then, a Petri net is derived
from this transition system. The approach requires expert
knowledge to specify the right abstraction that balances
overfitting and underfitting. If applied correctly, this techni-
que yields simpler models (compare Fig. 3 (left) and Fig. 1
(left)), but even these models are still convoluted and can be
simplified as shown by Fig. 3 (right).

The problem that we address in this paper is to structu-

rally simplify a mined process model N while preserving that

Fig. 1. Hospital patient treatment process after process discovery (left) and after subsequent simplification using the approach presented in this paper

(right).

Fig. 2. Municipality complaint process after process discovery (left) and after subsequent simplification (right).

1 Historically, process discovery and process mining were used

synonymously, as discovery was the first and most prominent process

mining problem that was addressed. Thus, various discovery techniques

are called ‘‘mining techniques’’ although they just focus on discovery.

We will use their original name, but use the term ‘‘discovery’’ to refer to

the problem.

D. Fahland, W.M.P. van der Aalst / Information Systems 38 (2013) 585–605586



Download English Version:

https://daneshyari.com/en/article/397417

Download Persian Version:

https://daneshyari.com/article/397417

Daneshyari.com

https://daneshyari.com/en/article/397417
https://daneshyari.com/article/397417
https://daneshyari.com

