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An inferential model is developed for large-scale simultaneous hypothesis testing. Starting
with a simple hypothesis testing problem, the inferential model produces a probability
triplet (p,q,r) on an assertion of the null or alternative hypothesis. The probabilities
p and q are for and against the truth of the assertion, whereas r =1 — p — q is the
remaining probability called the probability of “don’t know”. For a large set of hypotheses,
a sequence of assertions concerning the total number of true alternative hypotheses are
proposed. The inferential model provides levels of belief without a prior for the sequence of
assertions and offers a new multiple comparison procedure (MCP). The proposed method is
obtained by improving Fisher’s fiducial and the Dempster-Shafer theory of belief functions
so that it produces probabilistic inferential results with desirable frequency properties. The
new multiple comparison procedure is shown to have a comparable performance with
other existing MCPs and is favorable in terms of probabilistic interpretation. The proposed

method is applied in identifying differentially expressed genes in microarray data analysis.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

There have been tremendous research efforts made in the last decade on solving large-scale simultaneous hypothesis
testing, where one is concerned with a large number n of pairs of competing hypotheses: Hg) versus Hé’) fori=1,...,n
The multiple testing problem is introduced by modern scientific techniques, for example, gene expression microarray in
identifying differentially expressed genes from a large number of candidates or even the whole genome. Existing efforts
have been made for a series of multiple comparison procedures (MCPs), for example, controlling generalized family-wise
error rate (gFWER) or controlling false discovery rate [5,12,27,28,20]. Dudoit and Laan’s book [10] provides good descriptions
of the existing MCPs.

An alternative way of thinking about the multiple testing problem is to consider a sequence of assertions:

o = {there are at least k H's that are true}

fork=1,2,...,n. We will develop a probabilistic inference for this type of assertions and will use the probabilistic inference
to construct a multiple comparison procedure. We start with a single test for a null hypothesis Hy versus an alternative
hypothesis Hg.

The classic frequency theory of hypothesis testing developed by Neyman, Pearson, and Fisher has been known as the
twentieth century’s most influential piece of applied mathematics [6,11]. However, the p-value, computed from an observed
test statistic assuming the truth of the null hypothesis, does not have a desirable probability interpretation of whether or not
the null hypothesis is true. In fact, the interpretation of p-value is so confusing for nonstatisticians that many falsely think it

* Corresponding author.
E-mail addresses: chuanhai@purdue.edu (C. Liu), junxie@purdue.edu (J. Xie).

0888-613X/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ijar.2013.09.017


http://dx.doi.org/10.1016/j.ijar.2013.09.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:chuanhai@purdue.edu
mailto:junxie@purdue.edu
http://dx.doi.org/10.1016/j.ijar.2013.09.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2013.09.017&domain=pdf

C. Liu, J. Xie / International Journal of Approximate Reasoning 55 (2014) 654-665 655

is a probability of Hp. In the context of Bayesian hypothesis testing, Bayes factors are often computed to measure evidence
in favor one over the other hypothesis. However, like Fisher's p-value, Bayes factors do not have a desirable probability
interpretation.

An attractive approach is to seek prior-free probabilistic inferential methods. Ronald R. Fisher, the founding father of
the modern statistics, took a lead in this direction with his fiducial inference [16,17]. Intensive and stimulating investiga-
tions in 1940-1960s on fiducial had led to the nowadays commonly perceived conclusion that “fiducial inference stands as
R.A. Fisher’s one great failure” [32]. On the other hand, researchers have been inspired by the interesting ideas in fiducial
inference. Perhaps due to the challenge in modern scientific inference, especially with high-dimensional problems such as
multiple testing discussed in this article, it is exciting to see renewed efforts in generalizing and modifying Fisher’s fiducial.
These include the Dempster-Shafer theory [26,8], generalized fiducial [18,19], algorithmic inference [1-3], exact confidence
interval methods [4], confidence distributions [30,31], belief functions with good frequency properties [9], and inferential
models [21,14,23]. For a brief review of these methods, see Liu and Xie [25].

In this paper, we tackle the problem of multiple testing from a general perspective of producing uncertainty assessments
and derive a probabilistic inferential model for it. To be more precise, we follow Dempster [8] to view that probabilistic
inference for the truth of Hy or H; amounts to producing a probability p for the truth of Hy, a probability g for the truth
of Hg, and a residual probability r, called the probability of “don’t know”, for neither Hy nor H,. That is, the triplet (p,q, 1)
is our uncertainty assessment of Ho and H,. As in [21], we modify Fisher’s fiducial [17,18] to obtain a new probabilistic
inferential model, so that the triplet (p, g, r) has desirable frequency properties. The modified inferential framework is called
Inferential Model (IM). It is closely related to the Dempster-Shafer theory of belief functions [7,26]. Compared to the notions
of Belief and Plausibility in belief functions [26,23], p equals Belief and p +r equals Plausibility of Hy. IM provides direct sta-
tistical evidence for Hy and H,. Most importantly, the (p, g, r) triplet is calculated from the specification of our uncertainty
on unknown model parameters but is not the conditional probability under either the truth of Hg or the truth of Hy.

In Section 2, we introduce the framework of IM for single hypothesis testing. We specially discuss the interpretation of
the probabilities used in IM, which are considered as degrees of belief for the null or alternative hypothesis. In Section 3,
we study the many-normal-means problem, where the inferential model is used for multiple testing. We show that IM
offers a new multiple comparison procedure and has comparable performances with other popular MCPs. In Section 4, we
apply the inferential model of multiple testing in microarray data analysis, to identify differentially expressed genes. Finally,
in Section 5 we conclude with a few remarks and point to a future work that an optimal IM can be derived for multiple
testing.

2. The framework of IM
2.1. The basic framework

We start with a demonstration example. Assume that a set of observed data X is available and that model fy(X) for
X e & is specified, usually with unknown parameter 6 € ®. We use the following example to explain the framework of IM.
The key idea is to use an unobserved auxiliary random variable to represent fy(X) and to make uncertainty assessment by
predicting this unobserved auxiliary random variable.

Example 1. The exponential distribution with a rate parameter 6 (> 0) has a pdf f(x; ) =60e~* for x>0 and f(x;0)=0
for x < 0. It has a cdf F(x;0) =1 — e %% for x> 0. A random number generator of the exponential distribution, based on
inverse of its cdf, is given by

X=-6"'InU, whereU ~ Unif(0, 1). (1)

This sampling mechanism preserves the model for X given 6. Moreover, it specifies a relationship among the observed
data X, the unknown parameter 0, and the unobserved variable U. The unobserved variable U is called auxiliary random
variable and Eq. (1) is referred to as an association equation.

Our proposed IM inference about 6 is based on predicting the unobserved U using what is called a predictive random
set (PRS). An example of PRS is defined by a random interval in the following,

S ={u lu=5/<|V-5]}=[5-|V—-.5,.5+|V—.5]], withV~Unif(0,1).

A realization S of the PRS . is interpreted as the belief that the unobserved U lies in S. It follows from the association
equation (1) that given the observed data X, the true value of 6 belongs to

{6: X=—6""Inu forsomeu e S},
which is denoted as ®@x and more specifically
Ox=[-X""In(5+|V —.5),-X " 'In(.5— |V = .5[)], V ~Unif(0,1).

Now suppose that an assertion of interest about 6 is given by a subset ./ in the space of 9, i.e.,, &/ C (0,00). The
realization S supports the truth of < if and only if @x € 7, and supports the truth of the negation of ., denoted by /¢,
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