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Convergence theorems of a sequence of Choquet integrals for set-valued mappings are
shown. However, in the case of the monotone convergence theorem of the nonincreasing
sequence of Choquet integrals for set-valued mappings, we point out that the integrands
must be closed. Specially, this kind of real-valued Choquet integrals for set-valued
Keywords: mappings can be regarded as the Choquet integrals for single-valued functions.
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1. Introduction

The Choquet integral with respect to a fuzzy measure was proposed by Murofushi and Sugeno [1]. It was introduced
by Choquet [2] in potential theory with the concept of capacity. Then, it has been used for utility theory in the field of
economic theory [3], and has been used for image processing, pattern recognition, information fusion and data mining
[4-7], in the context of fuzzy measure theory [8-12]. But all the integrands in these papers are single-valued functions, and
the Choquet integral of a nonnegative single-valued function is defined as
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where f is a nonnegative measurable single-valued function, f, ={x € X | f(x) > a}.

It is well known that set-valued mappings have been used repeatedly in economics [13]. Integrals of set-valued mappings
had been studied by Aumann [14]. By using the approach of Aumann, Jang et al. [16,17] defined Choquet integrals of
set-valued mappings as
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where F is a measurable set-valued mapping, S(F) denotes the family of Choquet measurable selection of F.
In this paper we introduce another kind of Choquet integrals for set-valued mappings in similar form as fuzzy integrals
for set-valued mappings in [15] as follows:
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where F is a measurable set-valued mapping, Fy = {x € X | F(x) N [«, co] # ¢}. Specially, the kind of Choquet integral is
equal to the Choquet integral for a single-valued function, namely,
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where f(x) =supF(x) =sup{y | y € F(x)} for every x € X (Theorem 1(2)). Obviously, the Choquet integral in Eq. (1) is
set-valued but our Choquet integral in Eq. (2) is real-valued. Moreover, our Choquet integral is not the special case of the
one in [16-18] and the discussion manner is also quite different.

This paper is organized as follows. Section 2 presents some concepts on fuzzy measures and set-valued mappings.
Section 3 defines the real-valued Choquet integrals for set-valued mappings and shows the basic properties. Section 4 in-
vestigates the convergence of a sequence of Choquet integrals for set-valued mappings and obtains some results as follows:

(1) w is continuous from below <= for any F, 1 F we have (¢) [ F,du 1 (c) [ Fdu;

(2) p is conditionally continuous from above <= for any F, | F with (c) [ Fp,dit < oo for some ng € N we have
(©) [ Fndp | (¢) [ Fdu (Fn, F is closed);

(3) tn t o <= for any F we have (c) [ Fduy 1 (¢c) [ Fdu;

(4) pn | p < for any F with (c) [ Fduy, < oo for some ng € N we have (c) [ Fdun | (¢) [ Fdpu.

Section 5 concludes this paper.
2. Preliminaries

In the paper the following concepts and notations will be used. R = [0, co] denotes the set of extended nonnegative
real numbers. P(R") denotes the class of all the subsets of RT, C(R™) denotes the class of all the closed subsets of RT. X
denotes a nonempty set, A is a o-algebra on X, and (X, .A) is a measurable space.

Let A C RT, if A is bounded from above, define supA = the least upper bound of A; if A is unbounded from above,
define sup A = oo. Hence for every A C R, sup A is always well-defined.

Definition 1. (See [9].) Let u: A — [0,00] be a set function. w is called a fuzzy measure if it satisfies the following
conditions:

(1) () =0;
(2) w(A) < w(B) whenever A C B, A, B € A.

Definition 2. (See [9].) Let u : A — [0, co] be a fuzzy measure.
(1) p is said to be continuous from below if A, C Apy1, Ay € A, ne N, then w(UZ2 | Ay) = limy, w(Ap);
(2) w is said to be conditionally continuous from above if Ay D Apt1, An€ A, ne N and w(Ay,) < oo for some ng € N,

then u(ﬂﬁi]An) =lim, w(Ap).

A set-valued mapping is a mapping F : X — P(R™) \ {¢}, and it is said to be measurable if
FT'B)={xeX|F®)NB#p}ecA

for every B € B(RT), where B(R™) is the Borel algebra of RT.

Definition 3. Let F,G : X — P(R") \ {¢} be measurable set-valued mappings and p a fuzzy measure on (X, A). If w({x |
F(x) # G(x)}) =0, then we say F equals G almost everywhere, denoted by F =G a.e.

3. Real-valued Choquet integrals for set-valued mappings

When p is a fuzzy measure, the triple (X, A, i) is called a fuzzy measure space. Throughout this paper, unless otherwise
stated, the following are discussed on the fuzzy measure space (X, A, u).

Definition4. Let F : X — P(R")\ {¢} be a measurable set-valued mapping and A € A. Then the real-valued Choquet integral
of F on A is defined as
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