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In this paper the notion of a kind of clusters of subsets of a set based on rough
membership function is introduced. The algebraic structure emerged thereby is studied.
A comparison with classical rough sets with respect to the algebraic properties has been
made. A many-valued propositional logic for such entities is proposed. Representation
theorems in the style of Obtułowicz have been established.
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1. Introduction

This paper continues a series of works connecting rough sets and fuzzy sets following and developing the method
adopted in Obtułowicz’s paper [9], the first publication in this direction being in 2011 [2]. Since the inception of rough
set theory by Pawlak in 1982 [13], researchers had been interested in the interrelation between this theory and the theory
of fuzzy sets [25] that was already prevailing the scenario. Some instances of this group of research are mentioned in the
references [2,4,5,9,14,17,21–23].

In the present paper a notion of rough membership function based rough set or simply, membership function based
rough set (henceforth MF-rough set) is introduced. It will be apparent that an MF-rough set viewed as rough membership
function may be considered as a fuzzy set. The algebra of MF-rough sets is developed. This algebra has been compared
with the rough set algebra defined in [1]. A logic will be proposed which is endowed with MF-rough set semantics. Then
representation theorems are proved in the line of Obtułowicz linking MF-rough sets and a kind of fuzzy binary relations
having a special linear lattice of rational numbers as value set. The main departure from Obtułowicz however lies in not
taking the value set a Heyting algebra. The reason for this deviation will be clarified later at the appropriate place. This paper
is an improvement in a sense over the earlier work [2]. The entire study of the algebraic structure of rough membership
functions is a new addition. Besides, the logic developed here is propositional but in [2] it was a predicate logic and quite
different in its propositional content. Thirdly the formalism in connection with Obtułowicz-like representation of rough sets
is also an improvement [cf. the note at the end of Section 5].

As presented by Pawlak, at the origin of rough set theory lies a set X of objects and an equivalence relation R generated
by an attribute-value system. The pair 〈X, R〉 is called an approximation space. The equivalence class [·]R will also be
called a block of R . For any subset A ⊆ X , two approximations viz. lower and upper are defined by A = {x | [x]R ⊆ A} and
A = {x | [x]R ∩ A �= φ}.

These approximations of the set A are at the root of the theory. A concept with the extension A is approximated by two
rather well defined concepts with extensions A and A. Subsequent years have witnessed various methods of defining these
approximations based on various practical as well as theoretical motivations [6,10–12,15,19,20]. The above approximation
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based rough set theory is now called classical or Pawlakian. But even within the classical theory there are some differences
in the exact definition of what a rough set is. Depending upon various points of view and usages there may be various
definitions (see [1]). In this paper we take the following one.

Definition 1.1. A rough set is a triple 〈X, R, [·]≈〉 where X is a non-empty set, R is an equivalence relation on X and [·]≈ is
an equivalence class with respect to the relation ≈ of rough equality on the power set ℘(X) of X viz. A ≈ B if and only if
A = B and A = B , A, B ⊆ X .

The most popular definition is however given by the pair 〈A, A〉. Neither of the two definitions of a rough set requires
finiteness of the universe X nor any restriction on R but in most of the applications, as is well understood, the universe is
taken as finite.

This paper is organized as below.
In Section 2 rough membership function based rough set is defined and a few basic theorems are established. Section 3

deals with the algebra of rough membership functions vis-à-vis these newly defined entities. In Section 4 a many-valued
propositional logic has been proposed and a semantics is given interpreting a wff of the logic as an MF-rough set. Repre-
sentation theorems in the style of Obtułowicz is presented in Section 5. Section 6 contains some concluding remarks.

2. MF-rough sets

Taking the universe X as finite the notion of rough membership function was formally defined by Pawlak and Skowron
in [16] and applied to develop rough mereology [17,18].

Definition 2.1. Given any subset A ⊆ X , a rough membership function f A is a mapping from X to Ra[0,1], the set of rational
numbers in [0,1], defined by f A(x) = Card([x]R ∩A)

Card([x]R )
for all x ∈ X .

A basic assumption. For our purpose, we take X as any set, finite or infinite, but assume that the equivalence classes [·]R

or blocks generated by R are all of finite cardinality.

Observation 2.2. f A(x) = 1 if and only if x ∈ A.
f A(x) = 0 if and only if x ∈ (A)c .
0 < f A(x) < 1 if and only if x ∈ Bd(A) = A − A.
f A(x) = f A(y) for xR y.
If [·]R ⊆ Bd(A), [·]R is not a singleton.

Observation 2.3. Each block [·]R being finite, there is a fixed set of rational numbers in [0,1] that are admissible values for the members
of the block viz. {0, 1

n , 2
n , . . . , n−1

n ,1}, where Card([·]) = n.
This set of admissible values is determined right at the beginning when the partition is formed in X. Under a rough membership

function f A all elements of a block receive the same value out of the set of admissible values associated with the particular block which
will be denoted by admiss-value[·]. This value shall also be referred to as the value of the block under the rough membership function
and denoted by f A([·]).

Observation 2.4. Some properties of rough membership functions are listed below.

(i) If f A = f B then A ≈ B but the converse does not hold.
(ii) If A ≈ B then f A(x) = 1 if and only if f B(x) = 1 and f A(x) = 0 if and only if f B(x) = 0.

(iii) If for some A, x,0 < f A(x) < 1 then there exists B �= A such that f A = f B .
(iv) f Ac (x) = 1 − f A(x) for all x ∈ X.
(v) If A ⊆ B then f A � f B , but the converse does not hold.

(vi) If f A � f B then A ⊆ B and A ⊆ B i.e. A is roughly included in B.
(vii) max[0, f A(x) + f B(x) − 1] � f A∩B(x) � min[ f A(x), f B(x)].
(viii) max[ f A(x), f B(x)] � f A∪B(x) � min[1, f A(x) + f B(x)].

(ix) f A∪B(x) = f A(x) + f B(x) − f A∩B(x).

The results (vii), (viii) and (ix) are proved by Yao [23].
We now give the definition of an MF-rough set.

Definition 2.5. Let ≡ be the relation defined on ℘(X) by A ≡ B if and only if f A = f B . ≡ is an equivalence relation
generating a partition on ℘(X).

An MF-rough set is a triple 〈X, R, [·]≡〉 where X, R are as before and [·]≡ is a member of the quotient set ℘(X)/≡ .
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