Contents lists available at ScienceDirect



International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar



CrossMark

## Membership function based rough set

Mihir K. Chakraborty<sup>a,b</sup>

<sup>a</sup> Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India <sup>b</sup> School of Cognitive Science, Jadavpur University, Kolkata, India

#### ARTICLE INFO

Article history: Available online 25 October 2013

Keywords: Rough sets Fuzzy sets Many-valued logic Gödel implication Modal logic

### ABSTRACT

In this paper the notion of a kind of clusters of subsets of a set based on rough membership function is introduced. The algebraic structure emerged thereby is studied. A comparison with classical rough sets with respect to the algebraic properties has been made. A many-valued propositional logic for such entities is proposed. Representation theorems in the style of Obtułowicz have been established.

© 2013 Elsevier Inc. All rights reserved.

#### 1. Introduction

This paper continues a series of works connecting rough sets and fuzzy sets following and developing the method adopted in Obtułowicz's paper [9], the first publication in this direction being in 2011 [2]. Since the inception of rough set theory by Pawlak in 1982 [13], researchers had been interested in the interrelation between this theory and the theory of fuzzy sets [25] that was already prevailing the scenario. Some instances of this group of research are mentioned in the references [2,4,5,9,14,17,21–23].

In the present paper a notion of rough membership function based rough set or simply, membership function based rough set (henceforth *MF*-rough set) is introduced. It will be apparent that an *MF*-rough set viewed as rough membership function may be considered as a fuzzy set. The algebra of *MF*-rough sets is developed. This algebra has been compared with the rough set algebra defined in [1]. A logic will be proposed which is endowed with *MF*-rough set semantics. Then representation theorems are proved in the line of Obtułowicz linking *MF*-rough sets and a kind of fuzzy binary relations having a special linear lattice of rational numbers as value set. The main departure from Obtułowicz however lies in not taking the value set a Heyting algebra. The reason for this deviation will be clarified later at the appropriate place. This paper is an improvement in a sense over the earlier work [2]. The entire study of the algebraic structure of rough membership functions is a new addition. Besides, the logic developed here is propositional but in [2] it was a predicate logic and quite different in its propositional content. Thirdly the formalism in connection with Obtułowicz-like representation of rough sets is also an improvement [cf. the note at the end of Section 5].

As presented by Pawlak, at the origin of rough set theory lies a set *X* of objects and an equivalence relation *R* generated by an attribute-value system. The pair  $\langle X, R \rangle$  is called an approximation space. The equivalence class  $[\cdot]_R$  will also be called a block of *R*. For any subset  $A \subseteq X$ , two approximations viz. lower and upper are defined by  $\underline{A} = \{x \mid [x]_R \subseteq A\}$  and  $\overline{A} = \{x \mid [x]_R \cap A \neq \phi\}$ .

These approximations of the set *A* are at the root of the theory. A concept with the extension *A* is approximated by two rather well defined concepts with extensions <u>A</u> and  $\overline{A}$ . Subsequent years have witnessed various methods of defining these approximations based on various practical as well as theoretical motivations [6,10–12,15,19,20]. The above approximation

*E-mail address:* mihirc4@gmail.com.

<sup>0888-613</sup>X/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ijar.2013.10.009

based rough set theory is now called classical or Pawlakian. But even within the classical theory there are some differences in the exact definition of what a rough set is. Depending upon various points of view and usages there may be various definitions (see [1]). In this paper we take the following one.

**Definition 1.1.** A rough set is a triple  $\langle X, R, [\cdot]_{\approx} \rangle$  where *X* is a non-empty set, *R* is an equivalence relation on *X* and  $[\cdot]_{\approx}$  is an equivalence class with respect to the relation  $\approx$  of rough equality on the power set  $\wp(X)$  of *X* viz.  $A \approx B$  if and only if  $\underline{A} = \underline{B}$  and  $\overline{A} = \overline{B}$ ,  $A, B \subseteq X$ .

The most popular definition is however given by the pair  $\langle \underline{A}, \overline{A} \rangle$ . Neither of the two definitions of a rough set requires finiteness of the universe X nor any restriction on R but in most of the applications, as is well understood, the universe is taken as finite.

This paper is organized as below.

In Section 2 rough membership function based rough set is defined and a few basic theorems are established. Section 3 deals with the algebra of rough membership functions vis-à-vis these newly defined entities. In Section 4 a many-valued propositional logic has been proposed and a semantics is given interpreting a wff of the logic as an *MF*-rough set. Representation theorems in the style of Obtułowicz is presented in Section 5. Section 6 contains some concluding remarks.

#### 2. MF-rough sets

Taking the universe X as finite the notion of rough membership function was formally defined by Pawlak and Skowron in [16] and applied to develop rough mereology [17,18].

**Definition 2.1.** Given any subset  $A \subseteq X$ , a rough membership function  $f_A$  is a mapping from X to Ra[0, 1], the set of rational numbers in [0, 1], defined by  $f_A(x) = \frac{Card([x]_R \cap A)}{Card([x]_R)}$  for all  $x \in X$ .

**A basic assumption.** For our purpose, we take *X* as any set, finite or infinite, but assume that the equivalence classes  $[\cdot]_R$  or blocks generated by *R* are all of finite cardinality.

**Observation 2.2.**  $f_A(x) = 1$  if and only if  $x \in \underline{A}$ .  $f_A(x) = 0$  if and only if  $x \in (\overline{A})^c$ .

 $f_A(x) = 0$  if and only if  $x \in (A)$ .  $0 < f_A(x) < 1$  if and only if  $x \in Bd(A) = \overline{A} - \underline{A}$ .  $f_A(x) = f_A(y)$  for xRy. If  $[\cdot]_R \subseteq Bd(A), [\cdot]_R$  is not a singleton.

**Observation 2.3.** Each block  $[\cdot]_R$  being finite, there is a fixed set of rational numbers in [0, 1] that are admissible values for the members of the block viz.  $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ , where  $Card([\cdot]) = n$ .

This set of admissible values is determined right at the beginning when the partition is formed in X. Under a rough membership function  $f_A$  all elements of a block receive the same value out of the set of admissible values associated with the particular block which will be denoted by admiss-value[ $\cdot$ ]. This value shall also be referred to as the value of the block under the rough membership function and denoted by  $f_A([\cdot])$ .

**Observation 2.4.** Some properties of rough membership functions are listed below.

(i) If  $f_A = f_B$  then  $A \approx B$  but the converse does not hold.

- (ii) If  $A \approx B$  then  $f_A(x) = 1$  if and only if  $f_B(x) = 1$  and  $f_A(x) = 0$  if and only if  $f_B(x) = 0$ .
- (iii) If for some  $A, x, 0 < f_A(x) < 1$  then there exists  $B \neq A$  such that  $f_A = f_B$ .

(iv)  $f_{A^{c}}(x) = 1 - f_{A}(x)$  for all  $x \in X$ .

- (v) If  $A \subseteq B$  then  $f_A \leq f_B$ , but the converse does not hold.
- (vi) If  $f_A \leq f_B$  then  $\underline{A} \subseteq \underline{B}$  and  $\overline{A} \subseteq \overline{B}$  i.e. A is roughly included in B.
- (vii)  $\max[0, f_A(x) + f_B(x) 1] \leq f_{A \cap B}(x) \leq \min[f_A(x), f_B(x)].$
- (viii)  $\max[f_A(x), f_B(x)] \leq f_{A \cup B}(x) \leq \min[1, f_A(x) + f_B(x)].$
- (ix)  $f_{A\cup B}(x) = f_A(x) + f_B(x) f_{A\cap B}(x)$ .

The results (vii), (viii) and (ix) are proved by Yao [23]. We now give the definition of an *MF*-rough set.

**Definition 2.5.** Let  $\equiv$  be the relation defined on  $\wp(X)$  by  $A \equiv B$  if and only if  $f_A = f_B$ .  $\equiv$  is an equivalence relation generating a partition on  $\wp(X)$ .

An *MF*-rough set is a triple  $\langle X, R, [\cdot]_{\equiv} \rangle$  where *X*, *R* are as before and  $[\cdot]_{\equiv}$  is a member of the quotient set  $\wp(X)/_{\equiv}$ .

Download English Version:

# https://daneshyari.com/en/article/397677

Download Persian Version:

https://daneshyari.com/article/397677

Daneshyari.com