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This paper is concerned with the relationship between contexts, closure spaces, and com-

plete lattices. It is shown that, for a unital quantale L, both formal concept lattices and

property oriented concept lattices are functorial from the category L-Ctx of L-contexts and

infomorphisms to the category L-Sup of complete L-lattices and suprema-preserving maps.

Moreover, the formal concept lattice functor can be written as the composition of a right

adjoint functor from L-Ctx to the category L-Cls of L-closure spaces and continuous functions

and a left adjoint functor from L-Cls to L-Sup.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A formal context is a triple (X, Y, R), where X, Y are sets and R ⊆ X × Y is a relation from X to Y . In a formal context

(X, Y, R), X is considered to be the set of objects, Y the set of properties, and (x, y) ∈ Rmeans that the object x has the prop-

erty y. Formal contexts provide a common framework for formal concept analysis (FCA) [7,10] and rough set theory (RST)

[11,26]. Given a context (X, Y, R), there exists a contravariant Galois connection (R↑, R↓) and a covariant Galois connection

(R∃, R∀) between the powersets of X and Y . These two Galois connections play fundamental roles in formal concept analysis

and rough set theory respectively.

A formal concept [10] of the context (X, Y, R) is a pair (U, V) ∈ 2X × 2Y satisfying U = R↓(V) and V = R↑(U); a property

oriented concept [11,26,27] of the context (X, Y, R) is a pair (U, V) ∈ 2X × 2Y satisfying U = R∀(V) and V = R∃(U). The set

of all the formal concepts of the context (X, Y, R) is denoted by B(X, Y, R), and the set of all the property oriented concepts

by P(X, Y, R). Both B(X, Y, R) and P(X, Y, R) are complete lattices.

This paper is concerned with the functorial properties of B and P (see [19] for category theory). To this end, we must

determine the morphisms between contexts and that between complete lattices. There are different approaches to mor-

phismsbetween contexts, see e.g., [8–10,15,16,20,25,28]. 1 In particular,Mori [20] has shown that the construction of formal

concept lattices induces an equivalence between the category of contexts and Chu correspondences and that of complete

lattices and suprema-preserving maps.

In this paper, we consider infomorphisms between formal contexts. It is shown that both the construction of for-

mal concept lattices and that of property oriented concept lattices are functorial from the category Ctx of contexts and
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infomorphisms to the category Sup of complete lattices and suprema-preserving maps. It should be noted that an infomor-

phism is not a Chu correspondence in the sense of Mori [20] in general, hence the functoriality discussed here does not

follow from the result of Mori.

An infomorphism [9,16] (f , g) : (X, Y, R) −→ (A, B, S) between contexts is a pair of functions f : X −→ A and

g : B −→ Y such that (x, g(b)) ∈ R if and only if (f (x), b) ∈ S for all x ∈ X and b ∈ B. Contexts and infomorphisms

constitute a category Ctx.

Though it ispossible to showthatB, Pareboth functorial fromCtx toSup inadirectway,wewill establish the functoriality

of B, P by help of closure spaces. The benefit of doing so is that we will obtain decompositions of the functors B and P,

these decompositions are helpful for further investigation on these functors and the interrelationship between contexts,

closure spaces, and complete lattices.

Let X be a set, a closure operator is an order-preserving map c : 2X −→ 2X on the powerset of X such that A ⊆ c(A)
for all A ⊆ X and c ◦ c = c. The pair (X, c) is called a closure space, a subset A ⊆ X is closed if A = c(A). A map

f : (X, c) −→ (Y, d) between closure spaces is continuous if f (c(A)) ⊆ d(f (A)) for each subset A of X . The category of

closure spaces and continuous maps is denoted by Cls.

Given a context (X, Y, R), both R↓ ◦ R↑ and R∀ ◦ R∃ are closure operators on X . The correspondence (X, Y, R) 
→
(X, R↓ ◦ R↑) defines a functor U : Ctx −→ Cls which has a left adjoint.

Given a closure space (X, c), the set c(2X) of all the closed subsets of (X, c) is a complete lattice. The correspondence

(X, c) 
→ c(2X) defines a functor T : Cls −→ Sup which has a right adjoint.

For each context (X, Y, R), T ◦U(X, Y, R) is isomorphic to the formal concept latticeB(X, Y, R). HenceB is functorial from

Ctx to Sup, and it is the composition of a right adjoint functor U : Ctx −→ Cls and a left adjoint functor T : Cls −→ Sup.

The property oriented concept lattice functor can also be written as a composition of a functor V : Ctx −→ Cls and the

functor T : Cls −→ Sup.

All the conclusions stated above will be proved in a much more general setting in this paper. The theories of formal

concept lattices and property oriented concept lattices have been generalized to the fuzzy setting [6,11–13,17,21,26]. We

shall prove the L-version of the conclusions stated above for a unital quantale (L,&).
The contents are arranged as follows. Section 2 recalls somebasic notions of quantales. Section 3 introduces the categories

considered in this paper: the category L-Ctx of L-contexts and infomorphisms, the category L-Sup of complete L-lattices and

suprema-preserving maps, and the category L-Cls of L-closure spaces and continuous maps. An adjunction between L-Cls

and L-Sup is given in Section 4. Section 5 presents an adjunction between L-Ctx and L-Cls. In Section 6, it is demonstrated

that both the formal concept lattices and property oriented concept lattices of L-contexts are functorial from L-Ctx to L-Sup,

and the formal concept lattice functor is the composition of a right adjoint functor and a left adjoint functor. And, if (L,&)
has a dualizing element, then the property oriented concept lattice functor is the composition of the formal concept lattice

functor following a functor L-Ctx −→ L-Ctx and vice versa.

2. Quantales

A quantale [22] is a pair (L,&), where L is a complete lattice, & is an associative binary operation on L such that a&(
∨

bi) =∨
(a&bi) and (

∨
bi)&a = ∨

(bi&a) for all a, bi ∈ L. The top and the bottom element of L is denoted by 1 and 0 respectively.

A quantale (L,&) is said to be unital if there exists an element I ∈ L such that I&a = a = a&I for all a ∈ L. Finally, (L,&) is
commutative if a&b = b&a for all a, b ∈ L.

Definition 2.1 [22]. Let (L,&) be a quantale. Define↙,↘: L × L −→ L by

c ↙ b =∨{a ∈ L : a&b ≤ c} and b↘ c =∨{a ∈ L : b&a ≤ c}.
If (L,&) is commutative, then c ↙ b = b↘ c for all b, c ∈ L and will be denoted by b→ c.

Proposition 2.2 [22]. Let (L,&) be a quantale. The following properties hold for all a, b, c, at, bt ∈ L:

(1) a ≤ c ↙ b ⇐⇒ a&b ≤ c ⇐⇒ b ≤ a↘ c.

(2) (
∧

bt)↙ a = ∧
(bt ↙ a); a↘ (

∧
bt) = ∧

(a↘ bt).
(3) b↙ (

∨
at) = ∧

(b↙ at); (
∨

at)↘ b = ∧
(at ↘ b).

(4) (a↘ b)&(b↘ c) ≤ a↘ c; (c ↙ b)&(b↙ a) ≤ c ↙ a.

(5) (c ↙ b)↙ a = c ↙ (a&b); a↘ (b↘ c) = (b&a)↘ c.

(6) a↘ (c ↙ b) = (a↘ c)↙ b.

(7) a&(a↘ b) ≤ b; (b↙ a)&a ≤ b.

An element d in a quantale (L,&) is cyclic [22] if d ↙ a = a ↘ d for all a ∈ L. In this case, we write a → d for

d ↙ a = a ↘ d. It is easy to check that a quantale (L,&) is commutative if and only if every element of L is cyclic. An

element d in (L,&) is dualizing [22] if d↙ (a↘ d) = a = (d↙ a)↘ d for all a ∈ L.
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