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We propose a model of random walks on weighted graphs where the weights are interval 
valued, and connect it to reversible imprecise Markov chains. While the theory of imprecise 
Markov chains is now well established, this is a first attempt to model reversible chains. 
In contrast with the existing theory, the probability models that have to be considered 
are now non-convex. This presents a difficulty in computational sense, since convexity 
is critical for the existence of efficient optimization algorithms used in the existing 
models. The second part of the paper therefore addresses the computational issues of 
the model. The goal is finding sets of weights which maximize or minimize expectations 
corresponding to multiple steps transition probabilities. In particular, we present a local 
optimization algorithm and numerically test its efficiency. We show that its application 
allows finding close approximations of the globally best solutions in reasonable time.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Modelling uncertainty in Markov chains and weighted graphs

Markov chains with the property that every sequence of states is equally likely no matter whether the process runs 
forwards or backwards are said to be reversible. Reversible Markov chains are often interpreted and modelled with random 
walks on weighted graphs [1–7] where the states of the chain are the vertices of the graph and transition probabilities are 
proportional to the weights of the edges incident to the initial vertex. Reversible Markov chains are often used in Monte 
Carlo methods [8–10]. Random walks on graphs have become very popular in network analysis [11–14], social networks 
[15–18] and web recommender systems [19].

Modelling real world phenomena with Markov chains requires estimating a large number of parameters. Even with ever 
growing amounts of data at disposal this task is often impossible to achieve without serious uncertainty in the estimates. 
Ignoring this fact and regarding the parameters as precise leads to overprecise unreliable results. The need for more robust 
models for probability has led to various models known under the common name as theory of imprecise probabilities [20]. 
In particular, for Markov chains the theory of imprecise Markov chains has been developed for discrete [21–23] as well as 
continuous case [24]. Most of the existing models are based on the theory of lower previsions [25].

In the core of the theory of imprecise Markov chains is the idea that transition probabilities at each step are modelled 
with convex sets of probability distributions rather than single transition probabilities. Equivalently, all relevant probability 
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distributions can then be modelled by superadditive functionals called coherent lower previsions, which are defined as lower 
envelopes of sets of linear functionals.

Weights in graphs often also reflect some relation between vertices obtained on the basis of imperfect data. One way of 
expressing the resulting uncertainty is to use intervals instead of precise weights. While being a compelling generalization, 
the related optimization problems seem to be generally hard [26,27]. Up until now finding minimum spanning tree and 
shortest paths in graphs with weighted intervals has received a lot of attention, while random walks have not yet been 
explored, as it seems. The lack of appropriate models of imprecise Markov chains and the apparently high complexity of the 
general model might be among the reasons for this. The high complexity is also the main reason for our decision to keep 
our model simple by not allowing weights to vary completely freely within interval bounds, but instead assuming the sum 
of weights of edges incident to a given vertex to be constant. This could only be efficiently achieved by allowing self-loops, 
which then contain the non-allocated weight mass.

1.2. Model

The aim of the present article is to extend the theory of imprecise Markov chains to the case of reversible chains; more 
specifically, random walks on weighted graphs with interval weights. Interval weights are interpreted as sets containing the 
precise weights that will actually set the probabilities of transitions. We also assume that weights are not constant in time 
but rather at every time step an unknown mechanism selects a new set of weights, for which the only information we have 
is that they belong to the given intervals. Once the weights at certain time step are selected, transitions are calculated in 
the usual way. In our model we restrict the set of weights by requiring that the total sum of weights of edges incident to a 
vertex is constant and precisely known. This is achieved by assigning the remaining mass to the self-loops. This restriction 
will allow an efficient local optimization for calculation of multiple steps probability bounds. Actually a similar effect is the 
result of the rate of leaving a state when modelling continuous time Markov chains. Having precisely given marginals while 
dependencies are imprecise is not that uncommon since usually there is a lot more data available about marginal values 
than about dependencies.

In comparison to the existing models of imprecise Markov chains the most important differences are that probability 
models behind our model are not necessarily convex and that in general they do not satisfy Bellman’s principle of optimality 
(see e.g. [28]). Consequently calculating bounds for multiple steps transition probabilities is a much more computationally 
intensive task.

We give the detailed description of the model in Sections 2 and 3.

1.3. Results

While our theoretical model is not very different from other models of imprecise Markov chains, there are substantial 
differences when it comes to computations. We will investigate computing n-step transition probabilities, which are the ba-
sis for any analysis with Markov chains. As imprecision is involved, we cannot speak about single precisely given transition 
probabilities, but rather their lower and upper bounds. Moreover, in the case of imprecise probabilities, bounds for elemen-
tary events are not sufficient to specify the corresponding probability models. Therefore we have to consider computing 
bounds for more general expectations.

The existing models of imprecise Markov chains allow setting transitions from one state to others independently from 
one another. This ensures convexity of the underlying probability models and possibility to apply Bellman’s principle of 
optimality. These properties then imply existence of a single local and therefore also global optimum, which is found by 
sequentially maximizing expectations via linear programming. Complexity of the problem thus remains linear in the number 
of time steps. The problem of finding extremal expectation in our settings becomes considerably more complicated. In 
general the problem is not convex and neither it satisfies Bellman’s principle. Consequently, in general multiple local optima 
exist, and backwards induction is not applicable. This means that the irreducible dimensionality of the problem grows 
exponentially with the number of time steps.

Our main numerical result is a local optimization algorithm which we propose in Section 4. Given an initial weight 
function it returns a local optimal solution. Global extrema, though, are still sought by taking various starting points and by 
doing local optimization. As the size of the space of all feasible points is far too big to be tractable by any reasonable com-
puter, we cannot provide a criterion that would definitely ensure that obtained solution is global maximum. But numerical 
testing shows that in most cases a reasonable approximation of the global solution can be obtained by taking a moderate 
number of starting points. Even more convincingly it shows that if weight functions were chosen at random, without ap-
plying the local optimization, then it would almost certainly take incomparably larger samples to get results comparably 
close to the optimal solution. While, as far as we are aware, no other algorithms exist for optimization of random walks on 
graphs with interval weights, we can only compare our method to random choice, which is therefore by far outperformed.

2. Model settings

Let X be a nonempty set of states. We will usually denote the number of states by s. We consider random walks on 
the graph with vertices X and weighted edges that are given in the form of an interval weight function. The probabilities of 
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