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Estimation of potential customers’ willingness-to-pay provides essential information for 
setting the price of new products. When no market data are available, one usually has to 
resort to customer surveys. To avoid biases encountered when directly asking respondent 
how much they would be willing to pay for some products, a useful strategy is to propose 
some tentative prices and ask the customers whether they would agree to buy the product 
at those prices. The resulting data can then be analyzed using latent variable models. 
However, it is often very difficult to specify the error distribution for such models. In 
this paper, we investigate the use of generalized maximum-entropy (GME) approach as 
a solution to this problem. Using simulations, this method is shown to be robust to 
misspecification of the error distribution. As an illustration, the approach is then applied to 
the determination of the entrance fee to the Royal Park Rajapruek in Chiang Mai, Thailand.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Valid estimates of willingness-to-pay (WTP) are essential components to develop an optimal pricing strategy. For this 
reason, providing such estimates has been an important goal of marketing research in the last decades [1]. A first approach 
is to study customer preferences based on actual or simulated market data. However, this method is not feasible in the case 
of a totally new product. An alternative approach is to use survey data. In the so-called direct surveys, respondents (usually, 
selected customers) are asked how much they would be willing to pay for some product. However, this is a challenging task 
for respondents, and this kind of procedure may provide strongly biased estimates. For instance, a respondent may quote 
an artificially low price as a result of a “consumer collaboration effect” or, on the contrary, he or she may overestimate 
the price to avoid appearing stingy. To circumvent these difficulties, some indirect survey approaches have been proposed, 
in which prices are systematically varied and customers are asked to state whether they would be willing to purchase the 
good at that price. The difficulty is then to find a statistical model allowing us to draw reliable conclusions from such data.

An example of an indirect survey approach is given in [8], where the problem was to estimate the WTP for the entrance 
fee of Royal Park Rajapruek in Chiang Mai, Thailand. In this study, respondents were first proposed a randomly chosen 
initial bid and then, depending on their decision (accept or reject), a lower bid or an upper one [9]. This procedure thus 
provided interval-valued data consisting of a lower bound and/or an upper bound for each respondent’s unobserved WTP. 
The problem was then to determine the influence on WTP of covariates such as the age, sex or income, using interval 
regression. The validity of such an analysis depends crucially on the adequacy of the model, characterized here by the 
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error distribution. If knowledge of the data generating process is available and the correct model is specified, the maximum 
likelihood (ML) estimator is consistent. However, such knowledge is rarely available, and model misspecification may result 
in inconsistent estimates. In the particular case of the study in [8], knowledge about the error distribution was not available, 
and none of the usual families of distribution had a good fit with the residuals of the regression. This example points to 
the need for distribution-free inference methods capable of extracting most of the relevant information in the data, with 
minimal assumptions about the data generating process. The objective of this paper is to study the application of one such 
method – the generalized maximum-entropy (GME) approach [3,2]. As will be shown using both Monte Carlo simulation 
and real data, this approach is more robust than the ML method and it performs well over a range of data distributions.

The rest of this paper is organized as follows. The model and the GME method will first be described in Section 2. 
Simulation results will then be presented in Section 3, and the method will be applied to real data from the Royal Park 
Rajapruek case study in Section 4. Finally, Section 5 will conclude the paper.

2. Generalized maximum entropy

In this section, we first define the interval regression model in Section 2.1. The reformulation of this model using the 
GME approach is then described in Section 2.2.

2.1. Interval regression model

Let y∗
i denote the willingness to pay for a potential customer i, i = 1, . . . , n. We assume that each y∗

i can be explained 
by a vector of covariates xi using an equation of the form

y∗
i = x′

iβ + εi, i = 1, . . . ,n, (1)

where β = (β1, . . . , βK )′ is a vector of coefficients to be estimated and εi is an error term, assumed to be independent of 
the vector xi .

In the indirect survey approach considered here, the y∗
i are latent variables. Information about y∗

i is obtained as follows. 
First, we randomly generate an initial bid Pi . If this bid is accepted, we generate an upper bid P u

i > Pi . Otherwise, we 
generate a lower bid Pl

i < Pi . This procedure yields, for each respondent, a lower bound μl
i and an upper bound μu

i for the 
unobserved valued y∗

i , with

• μl
i = −∞ and μu

i = Pi if the first and second bids are rejected;
• μl

i = Pl
i and μu

i = Pi if the first bid is rejected and the second is accepted;
• μl

i = Pi and μu
i = P u

i if the first bid is accepted and the second is rejected;
• μl

i = P u
i and μu

i = +∞ if the first and second bid are accepted.

With the assumption that the error terms εi are normal and identically distributed with zero mean and variance σ 2, 
the classical ordered probit model based on the maximum likelihood approach could be used to estimate the parameter 
vector β (see, e.g., [9]). In practice, however, no knowledge about the data generation process is usually available. As shown 
in Section 4, specifying a model with a good fit to the data may be a very difficult task. To avoid these complications, 
non-parametric methods such as the GME approach can be used. This approach, presented in the next section, is more 
flexible than maximum likelihood as it makes minimum assumptions about the distribution of the data.

2.2. Model reformulation

The GME method [5,2] is based on the maximum entropy (ME) principle [6]. The main idea of the method is to treat both 
the parameter vector β and the errors εi as discrete random variables with bounded support. The corresponding probability 
distributions are determined by maximizing the Shannon entropy under first-moment constraints.

More precisely, let {zk1, · · · , zkM} denote the support space of component βk of β . In the absence of prior knowledge 
about the possible values of βk , a simple strategy is to define the support space to be centered on zero with wide range. 
The probability distribution of βk is then denoted by pk = (pk1, . . . , pkM)′ . Similarly, the error term εi is assumed to be a 
discrete random variable with support {v1, · · · , v J } and probability distribution w i = (wi1, . . . , wi J ). In classical regression 
problems where the response variable y∗

i is observed, Golan et al. [4] recommend using the “three-sigma rule” to establish 
bounds on the error components: the lower bound is v1 = −3sy and the upper bound is v J = +3sy , where sy is the 
empirical standard deviation of the observations y∗

i . For example if J = 5, then the support space of the error can be set to 
{−3sy, −1.5sy, 0, 1.5sy, 3sy}. When the y∗

i are latent, some other strategy has to be employed (see Sections 3.1 and 4).
According to the ME principle, the probability distributions pk and w i can be chosen to maximize the following entropy 

function,

H(p, w) = −
K∑

k=1

M∑
m=1

pkm log pkm −
n∑

i=1

J∑
j=1

wij log wij, (2)
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