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In this paper we study how different theoretical concepts of Bayesian networks have been 
extended to chain graphs. Today there exist mainly three different interpretations of chain 
graphs in the literature. These are the Lauritzen–Wermuth–Frydenberg, the Andersson–
Madigan–Perlman and the multivariate regression interpretations. The different chain 
graph interpretations have been studied independently and over time different theoretical 
concepts have been extended from Bayesian networks to also work for the different chain 
graph interpretations. This has however led to confusion regarding what concepts exist for 
what interpretation.
In this article we do therefore study some of these concepts and how they have been 
extended to chain graphs as well as what results have been achieved so far. More 
importantly we do also identify when the concepts have not been extended and contribute 
within these areas. Specifically we study the following theoretical concepts: Unique 
representations of independence models, the split and merging operators, the conditions 
for when an independence model representable by one chain graph interpretation can 
be represented by another chain graph interpretation and finally the extension of Meek’s 
conjecture to chain graphs. With our new results we give a coherent overview of how each 
of these concepts is extended for each of the different chain graph interpretations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Chain graphs (CGs) are hybrid graphs with two types of edges representing different types of relationships between the 
random variables of interest. These are the directed edges representing asymmetric relationships and a secondary type of 
edge representing symmetric relationships. Hence CGs extend Pearl’s classical interpretation of directed and acyclic graphs 
(DAGs), i.e. Bayesian networks (BNs). However, there exist three different interpretations of CGs in research. These are the 
Lauritzen–Wermuth–Frydenberg (LWF) interpretation presented by Lauritzen, Wermuth and Frydenberg in the late nineteen
eighties [9,11], the Andersson–Madigan–Perlman (AMP) interpretation presented by Andersson, Madigan and Perlman in 
2001 [2] and the multivariate regression (MVR) interpretation presented by Cox and Wermuth in the nineteen nineties [6,7]. 
A fourth interpretation of CGs can also be found in a study by Drton [8] but this interpretation has not been further studied 
and will not be discussed in this paper.

Each interpretation has a different separation criterion and does therefore represent different independence models. 
Many papers have studied these independence models and extended many theoretical concepts regarding independence 
models from BNs to also work for CGs. Most of these papers have however only looked at one interpretation at a time, 
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which has led to an incoherent picture of what theoretical concepts exist for the different CG interpretations. Moreover, this 
has caused research on some concepts to be missing.

In this paper we do therefore look into some of these concepts and study how they are extended to the different CG 
interpretations to give a coherent overview of the research performed. More importantly, we do also identify where the 
concepts have not yet been extended to certain CG interpretations and contribute in different ways within these areas. 
Specifically we look into four areas that in different ways connect to the independence models of CGs. The first area is what 
unique representations exist for the different independence models representable by the different CG interpretations. Having 
such unique representations is important since there might exist multiple CGs representing the same independence model 
even for the same CG interpretation. The second area concerns the feasible split and feasible merging operators. These 
operators are used for altering the structure of a CG without altering which Markov equivalence class it belongs to. The 
third area we look into is what the conditions are for when an independence model represented by one CG interpretation 
also can be represented by another CG interpretation. This is important since it allows us to see when the different CG 
interpretations overlap in terms of representable independence models. The fourth and final area concerns Meek’s conjecture 
and whether it can be extended to the different CG interpretations. Meek’s conjecture states that given two DAGs G and H , 
s.t. the independence model represented by G includes the independence model represented by H , we can transform G into 
H through a sequence of operations s.t. the independence model represented by G includes the independence model of H
for all intermediate DAGs G . The operations consist in adding a single directed edge to G , or replacing G with a Markov 
equivalent DAG. The validity of the conjecture was proven by Chickering in 2002 [4] and has allowed several learning 
algorithms for DAGs to be constructed.

Our contribution, in addition to a study of previous research in the area, is then the following definitions, examples and 
algorithms, together with their proofs of correctness, that previously have been missing:

• The definitions of the feasible split and feasible merging operators for AMP CGs and proof that for any two Markov 
equivalent AMP CGs G and H there exists a sequence of feasible splits and mergings that transforms G into H .

• An example showing there are no unique representatives of equivalence classes of MVR CGs that are MVR CGs.
• An algorithm that from any AMP CG G outputs the Markov equivalent AMP essential CG H .
• The necessary and sufficient conditions for when an independence model represented by a MVR CG can be perfectly 

represented by a CG in another interpretation and vice versa.
• An example that proves that Meek’s conjecture does not hold for MVR CGs.

The remainder of the article is organized as follows. In the next section we present the notation we use throughout 
the article. In Section 3 we discuss the unique representations and in Section 4 we define the feasible split and merging 
operators. Section 5 contains the necessary and sufficient conditions for when an independence model represented by a CG 
in one interpretation can be perfectly represented by a CG in another interpretation. In Section 6 we then discuss Meek’s 
conjecture and prove that this does not hold for MVR CGs. Finally we do a short summary and conclusion in Section 7.

To improve readability of the article we have chosen to move most of the theorems, lemmas and proofs to appendices. 
The article does therefore include three appendices, Appendices A, B and C, that contain the theorems, lemmas and proofs 
of Sections 3, 4 and 5 respectively.

2. Notation

All graphs are defined over a finite set of discrete or continuous random variables V . If a graph G contains an edge 
between two nodes V 1 and V 2, we denote with V 1→V 2 a directed edge, with V 1↔V 2 a bidirected edge and with V 1−V 2 an 
undirected edge. By V 1 ←�V 2 we mean that either V 1→V 2 or V 1↔V 2 is in G . By V 1�V 2 we mean that either V 1→V 2 or 
V 1−V 2 is in G . By V 1 ��V 2 we mean that there exists an edge between V 1 and V 2 in G while we with V 1 · · · V 2 mean 
that there might or might not exist an edge between V 1 and V 2. By a non-directed edge we mean either a bidirected edge 
or an undirected edge. A set of nodes is said to be complete if there exist edges between all pairs of nodes in the set.

The parents of a set of nodes X of G is the set paG(X) = {V 1|V 1→V 2 is in G , V 1 /∈ X and V 2 ∈ X}. The children of X is 
the set chG(X) = {V 1|V 2→V 1 is in G , V 1 /∈ X and V 2 ∈ X}. The spouses of X is the set spG(X) = {V 1|V 1↔V 2 is in G , V 1 /∈ X
and V 2 ∈ X}. The neighbors of X is the set nbG(X) = {V 1|V 1−V 2 is in G , V 1 /∈ X and V 2 ∈ X}. The boundary of X is the set 
bdG(X) = paG(X) ∪ nbG(X) ∪ spG(X). The adjacents of X is the set adG(X) = bdG(X) ∪ chG(X).

To exemplify these concepts we can study the graph G with five nodes shown in Fig. 1a. In the graph we can see two 
bidirected edges, one between B and D and one between D and E . Hence we know the spouses of D are B and E . G also 
contains two directed edges between A and B and B and E and we can see that E is the only child of B and B is the only 
child of A. Finally G also contains one undirected edge between C and D and hence C is a neighbor of D . All and all this 
means that the boundary of B is A and D while the adjacents of B also contains E in addition to A and D .

A route from a node V 1 to a node Vn in G is a sequence of nodes V 1, . . . , Vn s.t. V i ∈ adG(V i+1) for all 1 ≤ i < n. 
A section of a route is a maximal (w.r.t. set inclusion) non-empty set of nodes B1, . . . , Bn s.t. the route contains the subpath 
B1−B2− . . .−Bn . It is called a collider section if B1, . . . , Bn together with the two neighboring nodes in the route, A and 
C , form the subpath A→B1−B2− . . .−Bn←C . For any other configuration the section is a non-collider section. A path is 
a route containing only distinct nodes. The length of a path is the number of edges in the path. A path is descending if 



Download English Version:

https://daneshyari.com/en/article/397883

Download Persian Version:

https://daneshyari.com/article/397883

Daneshyari.com

https://daneshyari.com/en/article/397883
https://daneshyari.com/article/397883
https://daneshyari.com

