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This paper presents algorithms, both for probabilistic satisfiability and for coherence 
checking, that rely on reduction to integer programming. That is, we verify whether 
probabilistic assessments can be satisfied by standard probability measures (Kolmogorovian 
setting) or by full conditional probabilities (de Finettian coherence setting), and in both 
cases verify satisfiability or coherence using integer programming techniques. We present 
an empirical evaluation of our method, the results of which show evidence of phase 
transitions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of arguments that combine propositions and probabilities has deserved attention for quite some time. For 
instance, in Boole’s work we find interesting examples such as:

The probability that it thunders upon a given day is p, the probability that it both thunders and hails is q, but of the 
connexion of the two phenomena of thunder and hail, nothing further is supposed to be known. Required the probability 
that it hails on the proposed day. [13, Chapter XVIII, Ex. 1]

Here we have propositions A and B , assessments P(A) = p and P(A ∧ B) = q. Boole asks for P(B) and obtains the tight 
interval [q, 1 − (p − q)]. There is a probability measure that satisfies the assessments; for this reason, they are coherent.

Suppose we have atomic propositions {A j}n
j=1 and propositional sentences {φi}M

i=1 involving those atomic propositions. 
We may associate one or more of these sentences with probabilities, writing for instance P(φi) = αi . As detailed later, 
to establish semantics for these assessments we consider a probability measure over the set of truth assignments. The 
Probabilistic Satisfiability (PSAT) problem is to determine whether it is possible to find a probability measure over truth 
assignments such that all assessments are satisfied [25,28,31,33,34,37]. When assessments involve conditional probabilities 
such as P(A|B) = α, there are two paths to follow. Kolmogorovian probability theory reduces such assessments to ratios of 
probabilities. The other path is to use de Finetti’s theory of coherent probabilities, where full conditional probabilities are 
used to interpret conditional assessments [19,23,58]. The Coherence Checking (CCHECK) problem is to determine whether it 
is possible to find a full conditional probability that satisfies all assessments, without requiring that assessments are over 
an algebra or any other structure [5,6]. Coherence checking has been explored in a variety of settings; a typical example is:
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A doctor considers three possible diagnoses, H1 (ileum), H2 (peritonitis), and H3 (appendicitis with local peritonitis), 
with the logical condition that H3 → (¬H1) ∧ H2, and assessments P(H1) = 1/2, P(H2) = 1/5, and P(H3) = 1/8. Note 
that diagnoses do not constitute a partition of the certain event. The assessments are coherent in that they are satisfied 
by at least a probability measure. The doctor now considers E (no pain in abdomen), notes that H3 → ¬E , and declares 
P(E|H2) = 2/5 and P(E|¬H2) = 1/8. Now the whole set of assessments fails to be coherent.1

Probabilistic satisfiability and coherence checking are central problems in reasoning under uncertainty. They serve not 
only as a foundation for logical and probabilistic inference, but as a basis for probabilistic rules [50], and as an initial 
necessary step in the understanding of combinations of first-order logic and probabilities [35,46,51].

The most direct way to solve a PSAT problem is to write it down as a linear feasibility problem [33]. The difficulty is 
that the resulting linear program may be too large; for n propositions, we must build a matrix with up to 2n columns. 
When conditional probabilities are present, coherence checking may require sequences of such linear programs. To avoid 
dealing with exponentially many columns, one may resort to column generation techniques [40], to inference rules that 
capture probabilistic relationships [6], or even to combinations of column generation and inference rules [38]. There is also 
a different approach to probabilistic satisfiability that reduces it to logical satisfiability [4,26]. Overall, results in the literature 
save computations by applying increasingly complicated methods.

In this paper we present another approach to probabilistic satisfiability and coherence checking, where these problems 
are turned into integer programs. Our basic algorithm for PSAT is rather concise and easy to implement when a linear 
solver is available. In fact, our goal is to present methods that can be applied to medium sized problems, with say some 
20 to 200 atomic propositions, by exploiting the fact that integer programming technology has improved dramatically in 
recent years. So, instead of explicitly resorting to inference rules and column generation, our methods simply outsource such 
schemes to the linear solver, as top solvers do apply sophisticated heuristics and numerical stabilization internally. We show 
that our techniques can be easily extended to expectation assessments, and describe ways to reduce coherence checking to 
(sequences of) integer linear programs.

As our experiments show, integer programming techniques are not yet capable of beating the fastest methods in the 
literature for large problems, but they offer a robust basis for PSAT and CCHECK. Using our implementation we study the 
issue of phase transition in probabilistic satisfiability, showing evidence of interesting phenomena in PSAT.

Section 2 summarizes necessary background in satisfiability and probability satisfiability. Our basic algorithm for prob-
abilistic satisfiability is described in Section 3. We consider extensions of probabilistic satisfiability in Section 4, and then 
study coherence checking in Section 5. Implementation and experiments, with a discussion of phase transitions, are pre-
sented in Section 6.

2. SAT and PSAT

Consider n atomic propositions A j and M sentences φi in propositional logic involving those atomic propositions. A truth 
assignment is an assignment of truth values (True or False) to each atomic proposition, that induces an assignment of 
truth values for all sentences involving the atomic propositions. If a truth assignment ω is such that sentence φ is True, 
write ω |� φ. The Satisfiability (SAT) problem is to determine whether or not there exists a truth assignment to all atomic 
propositions such that all sentences evaluate to True [18,30].

If every sentence φi is a conjunction of clauses, then we have a SAT problem in Conjunctive Normal Form (CNF). A SAT 
problem in CNF is a k-SAT problem when each clause has k literals (note that literals may appear more than once in a clause, 
so in fact we can have up to k distinct literals). The 2-SAT problem has a polynomial solution, while k-SAT is NP-complete 
for k > 2.

For a fixed n, m and k, one may generate a random k-SAT with n propositions and m clauses, as follows. For each one 
of the m clauses: select k propositions at random, and for each proposition produce a literal that may be negated or not, 
with probability half. There has been intense study of phase transition phenomena in random k-SAT; that is, the observed 
fact that for small values of m/n the probability that a random k-SAT is satisfiable tends to one as n grows (at fixed m/n), 
while for large values of m/n the probability that a random k-SAT is satisfiable tends to zero as n grows [30]. Moreover, in 
the regions where satisfiability has probability approaching zero or one we observe that generated random k-SAT problems 
can be easily solved, while in the transition between the two regions we find hard problems.

Suppose that some sentences, say φ1 to φq , for q ≤ M , are associated with probabilities through assessments of the 
form P(φi) �� αi , where �� is one of ≥, =, ≤. The semantics of such an assessment is as follows. Take the set of 2n truth 
assignments that can be generated for the n propositions. A probability measure P over this set satisfies the assessments if, 
for each assessment P(φi) �� αi ,∑

ω|�φi

P(ω) �� αi . (1)

1 The example is due to Coletti and Scozzafava [21, Example 1], and appears edited here. Failure of coherence can be verified as follows. We must have 
P(H2) = 1/5 = P(H2 ∧ E) +P(H2 ∧ ¬E) ≥ P(H2 ∧ E) +P(H2 ∧ ¬E ∧ (¬H1 ∧ H3)); but P(H2 ∧ E) = 2/25 (multiplying P(H2) = 1/5 and P(E|H2) = 2/5) and 
P(H2 ∧ ¬E ∧ (¬H1 ∧ H3)) = P(H3) = 1/8 (because H2 ∧ ¬E ∧ (¬H1 ∧ H3) is equivalent to H3 as H3 → (¬H1) ∧ H2 and H3 → ¬E).
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