Actualités dans la biologie, l'imagerie et le traitement des gliomes de l'adulte

Advances in adults' gliomas biology, imaging and treatment

F. Ducray¹, G. Dutertre², D. Ricard³, E. Gontier⁴, A. Idbaih⁵, C. Massard⁶

¹Université Claude-Bernard-Lyon-I, Service de neuro-oncologie, groupe hospitalier Est, 8, avenue Rockefeller, 69373 Lyon, France

²Hôpital du Val-de-Grâce, Service de neurochirurgie, 74, boulevard de Port-Royal, 75230 Paris, France

³Hôpital du Val-de-Grâce, Service de neurologie, 74, boulevard de Port-Royal, 75005 Paris, France

⁴Hôpital du Val-de-Grâce, Service de médecine nucléaire, 74 boulevard de Port-Royal, 75005 Paris

⁵Inserm, unité 711, 75013 Paris, France

6Institut Gustave-Roussy, SITEP (Service des innovations thérapeutiques précoces), département de médecine, université Paris-XI, 39, rue Camille-Desmoulins, 94805 Villejuif, France <christophe.massard@igr.fr>

Article reçu le 19 juin 2009, accepté le 13 novembre 2009 **Tirés à part :** C. Massard

Résumé. Grâce à une meilleure compréhension de la biologie des gliomes, une classification mixte histomoléculaire est en train de voir le jour. Dans les gliomes de grade III, les stratégies thérapeutiques en cours d'évaluation dépendent de la codélétion 1p/19q et dans les glioblastomes (GBM) de l'état de méthylation du promoteur du gène MGMT. Les nouvelles techniques d'imagerie permettent de mieux déterminer le potentiel évolutif des gliomes. Dans les gliomes de bas grade, le rôle de la chirurgie est désormais largement reconnu de même que l'intérêt de la chimiothérapie. Au sein des gliomes anaplasiques, plusieurs essais de phase III ont permis de clarifier les rôles respectifs de la radiothérapie et de la chimiothérapie. Dans les GBM, la radiochimiothérapie concomitante a constitué un progrès important. Si la plupart des traitements ciblés, notamment anti-EGFR se sont avérés décevants jusqu'à présent, l'efficacité des traitements antiangiogéniques est prometteuse. L'objet de cet article est de synthétiser les avancées dans les domaines de la biologie, de l'imagerie et du traitement des gliomes de grades II, III et IV de l'adulte.

Mots clés : gliome de bas grade, gliome anaplasique, glioblastome

Abstract. A better understanding of gliomas biology is now leading to a combined histo-molecular classification of these tumors. In anaplastic gliomas ongoing studies depend on 1p/19q codeletion status and in glioblastomas on MGMT methylation status. Advanced brain tumor imaging elicits a better identification of gliomas evolutive potential of. In lowgrade gliomas, the importance of maximal resection and the role of chemotherapy are being increasingly recognized. In anaplastic gliomas, phase III studies have clarified the respective roles of chemotherapy and radiotherapy. In glioblastomas concomitant chemoradiotherapy is the standard. Most targeted therapies, namely anti-EGFR therapies have failed to demonstrate efficacy but anti-angiogenics are promising. The aim of this review is to discuss the main advances in adults' gliomas biology, imaging and treatment.

Key words: low-grade glioma, anaplastic glioma, glioblastoma

Introduction

Les gliomes sont les tumeurs cérébrales primitives les plus fréquentes de l'adulte [1]. La classification OMS 2007 distingue les gliomes en fonction de leur morphologie (astrocytomes, oligodendrogliomes, oligoastrocytomes) et de leur grade de malignité (de I à IV) [2]. Le grade I regroupe principalement les astrocytomes pilocytiques. Ce sont les seuls gliomes bénins, contrairement aux autres gliomes, ils peuvent être guéris par la chirurgie. Les gliomes de grade II (gliomes de bas grade) sont des gliomes lentement évolutifs mais dont

l'évolution vers un gliome de grade III ou IV est inéluctable avec un délai variable, en général de plusieurs années [3]. Les gliomes de grade III peuvent survenir de novo ou compliquer l'évolution d'un gliome de bas grade, leur degré d'anaplasie et de prolifération est plus important [4]. Le grade IV correspond aux glioblastomes (GBM), il s'agit des gliomes les plus fréquents et les plus graves. Ils sont caractérisés, notamment, par une densité cellulaire élevée, des atypies cytonucléaires importantes, une prolifération endothéliocapillaire et des zones de nécrose [5].

Grâce à une meilleure compréhension de la biologie des gliomes, une classification mixte histomoléculaire est en train de voir le jour [6, 7]. Ainsi, dans les gliomes anaplasiques, les stratégies thérapeutiques en cours d'évaluation dépendent actuellement du statut des

Abbréviations

AIII	astrocytome anaplasique
BMP	bone morphogenetic protein
BRAF	v-raf murine sarcoma viral oncogene homolog B1
CD95	Fas (TNF receptor superfamily member 6)
ERBB2	-erb-b2 erythroblastic leukemia viral oncogene
	homolog 2, neuro/glioblastoma derived oncogene
	homolog
EGFR	epidermal growth factor receptor
GLI	glioma-associated oncogene homolog 1
GBM	glioblastome
HIF1a	hypoxia inducible factor 1, alpha subunit
HIPK2	homeodomain interacting protein-kinase 2
HOX	homeobox genes
IDH1	isocitrate dehydrogénase I
L1CAM	L1 cell adhesion molecule
MGMT	06-methyl-guanine-méthyl-transférase
mTOR	mammalian target of rapamycin
NAA	N-acétyl-aspartate
NF1	neurofibromin 1
OAIII	oligoastrocytome anaplasique
OIII	oligodendrogliome anaplasique
Olig2	oligodendrocyte lineage transcription factor 2
p18INK4c	cyclin-dependent kinase inhibitor 2C
PCV	procarbazine, CCNU, vincristine
PIK3R1	phosphoinositide-3-kinase, regulatory subunit 1
	(alpha)
PTEN	phosphatase and tensin homolog
rCBV	relative Cerebral Blood Volume
RTK	récepteurs tyrosine-kinases
RTCT	radiochimiothérapie concomitante
TEMP	tomographie par émission monophotonique
TEP	tomographie par émision de positons
TGFbeta	transforming growth factor, beta
TP53	tumor protein p53
VEGFR	vascular endothelial growth factor receptor
Yes	v-yes-1 Yamaguchi sarcoma viral oncogene

homolog 1

bras chromosomiques 1p et 19q et, dans les GBM, de l'état de méthylation du promoteur du gène MGMT (O6-méthylguanine-méthyltransférase). Les nouvelles techniques d'imagerie sont, quant à elles, d'un apport considérable pour la détermination du potentiel évolutif des gliomes, le suivi de leur évolution et la réalisation du geste chirurgical [8]. De nombreuses innovations thérapeutiques ont vu le jour depuis quelques années. Dans les gliomes de bas grade, le rôle de la chirurgie est désormais largement reconnu, de même que l'intérêt de la chimiothérapie, même si sa place par rapport à la radiothérapie reste à déterminer [9, 10]. Au sein des gliomes anaplasiques, trois essais de phase III ont permis de clarifier les rôles respectifs de la radiothérapie et de la chimiothérapie. Dans les GBM, la radiochimiothérapie concomitante (RTCT) a constitué un progrès important. Si la plupart des traitements ciblés, notamment anti-EGFR (epidermal growth factor receptor), se sont avérés décevants jusqu'à présent, l'efficacité des traitements antiangiogéniques laisse entrevoir de grands espoirs [11]. L'objet de cet article est de synthétiser les avancées récentes dans les domaines de la biologie, de l'imagerie et du traitement des gliomes de grades II, III et IV de l'adulte.

Actualités dans la biologie des gliomes

La recherche biologique pure et translationnelle, portant sur les gliomes, vise deux principaux objectifs :

- découvrir de nouveaux biomarqueurs pertinents et utilisables en pratique clinique;
- mieux comprendre la tumorogenèse cellulaire et moléculaire de ces tumeurs avec, notamment, l'espoir d'identifier de nouvelles voies thérapeutiques.

Les tumeurs oligodendrogliales — oligodendrogliomes (grades II et III) et oligoastrocytomes ou gliomes mixtes (grades II et III) — ont été très étudiées sur le plan moléculaire ces dernières années. La majorité de ces tumeurs (environ deux tiers) présente une codélétion des bras chromosomiques 1p et 19q [12]. Cette altération génétique est associée à une meilleure chimiosensibilité et à un meilleur pronostic [13-16]. Il s'agit d'un biomarqueur désormais robuste qui est pris en compte dans la stratification des patients dans les essais cliniques de l'*European Organisation for Research and Treatment of Cancer* (EORTC) portant sur les gliomes

Download English Version:

https://daneshyari.com/en/article/3979418

Download Persian Version:

https://daneshyari.com/article/3979418

<u>Daneshyari.com</u>