

Études cliniques de phases 0, 1 et 2 en cancérologie : questions d'actualité

Phases 0, 1 and 2 oncology clinical trials: current questions

N. Penel^{1,2}, C. Fournier³, C. Stéphanie⁴

¹Centre Oscar-Lambret, Département de cancérologie générale, 3, rue Frédéric-Combemale, 59000 Lille, France ²EA 2694 santé publique, épidémiologie et modélisation des maladies chroniques, université de Lille-II, 59000 Lille, France

Article reçu le 7 septembre 2009, accepté le 6 octobre 2009 **Tirés à part :** N. Penel <n-penel@o-lambret.fr>
³Centre Oscar-Lambret, Unité de biostatistique, 3, rue Frédéric-Combemale, 59000 Lille, France

⁴Centre Oscar-Lambret, Unité intégrée de recherche clinique, 3, rue Frédéric-Combemale, 59000 Lille, France

Résumé. Nous proposons une revue synthétique des questions actuelles portant sur les études précoces : études de phase 2 (choix du critère de jugement principal, apport des plans bayésiens, rôle de la randomisation et de la stratification, limites), études de phase 1 (sélection optimale des patients, intégration des nouveaux designs, limites) et étude de phase 0. Les particularités propres aux thérapeutiques moléculaires ciblées sont évoquées pour chacune de ces phases. A

Mots clés : essais précoces, méthodologie, randomisation, stratification, sélection des patients

Abstract. We propose here a general review of current questions related to early trials, including the choice of the primary endpoint, role of bayesian designs, role of stratification and randomization for phase 2 trials, patient selection, and new designs for phase 1 and phase 0 trials. We also discuss the difficulties to apply such methodologies to molecular targeted therapies development.

Key words: exploratory trials, methodology, randomization, stratification, patient selection

es phases précoces (phases 1 et 2) du développement des traitements anticancéreux sont des étapes cruciales, pouvant amener à l'abandon injustifié de traitements prometteurs ou à la poursuite indue du développement de molécules inefficaces ou dangereuses. Ces étapes sont regroupées par l'EMEA (European Medicines Agency) sous le terme exploratory trials (études exploratoires). Elles reposent sur des règles de décision et des conventions relativement simples, parfaitement adaptées à l'évaluation des cytotoxiques et de leurs associations (tableau 1). Toutefois, ces règles sont assez souvent confusément perçues par les cliniciens. Le développement de thérapeutiques moléculaires ciblées ou d'autres biothérapies a remis en question certaines de ces règles qui nécessitent d'être actualisées. Dans cette revue nous souhaitons revoir la méthodologie des études de phase 2 et 1, puis aborder la logique des études de phase 0 [1-4].

Études de phase 2

Les études de phase 2 sont une étape clé de la décision de développement. Y a-t-il un intérêt à poursuivre dans telle ou telle indication ? (*Go-No Go Decision*).

Méthodologie générale

Approche classique

L'approche classique (Frequentist approach) repose sur des règles simples (tableau 2) [1]. On définit a priori des seuils d'efficacité (« P1 ») et d'inefficacité (« P0 »), un risque acceptable de retenir une molécule inefficace (risque α , dit de première espèce ou risque de faux-positif) et un risque acceptable de rejeter une substance efficace (risque β , dit de deuxième espèce ou risque de faux-négatif) [1, 5]. Les designs de Simon ou Fleming par exemple permettent de calculer la taille de l'échantillon, permettant de répondre rapidement aux questions : le traitement est-il inefficace

Tableau 1. Plan de développement idéal d'un cytotoxique en cancérologie.

Phase	Objectif principal	Critère de jugement principal	Principaux objectifs secondaires	Remarques
1	Déterminer le schéma optimal d'administration du traitement (dose)	Dose maximale tolérée (et dose recommandée pour les phases 2)	Établir le profil de toxicité Rechercher des signes précoces d'efficacité Explorer les caractéristiques pharmacodynamiques et pharmacocinétiques	30 patients environ Basé sur la toxicité Repose sur le concept de relation dose-efficacité (dose-toxicité)
2	Déterminer l'efficacité sur un critère à court terme dans une indication donnée et selon un schéma d'administration établi	Taux de réponses objectives (ou taux de non-progression)	Toxicité observée Durée de réponse	30 patients environ (en 1, 2 ou 3 étapes) De plus en plus souvent randomisée, stratifiée
3	Comparer le traitement expérimental à un traitement de référence	Critère de survie globale ou de survie sans progression	Taux de réponses Profils de toxicité	Nombre variable, fonction de la différence escomptée et de la puissance désirée Le plus souvent étude de supériorité (plus rarement d'équivalence ou de non-infériorité)

Tableau 2. Approche classique *versus* bayésienne pour les études de phase 2.

A	A
Approche classique	Approche bayésienne
Frequentist approach	Bayesian approach
Interprétation simple	Interprétation complexe
Seuils d'efficacité et d'inefficacité définitivement fixés	Seuils d'efficacité et d'inefficacité pouvant évoluer en fonction des informations collectées au cours de l'étude
Souvent basé sur des critères de jugement binaire	Peut se baser sur des critères de jugement non binaires (par exemple, probabilité d'obtenir 30 % de réponses complètes, sachant que 5 réponses complètes ont été observées chez les 10 premiers patients)
Modalité de randomisation fixée (si indiquée)	Allocation des traitements pouvant être déséquilibrée en fonction des résultats observés (play the winner)
Ne prend en compte que ce qui se passe dans l'étude ou dans la strate	Peut intégrer des éléments extérieurs
Analyse en fin d'étape(s)	Analyse continue (<i>adaptative design</i>) nécessitant un monitoring en temps réel

 $(P \le P0, \text{ avec une probabilité d'erreur inférieure à } \beta)$? Puis, secondairement à la question suivante : le traitement est-il efficace $(P \ge P1, \text{ avec une probabilité d'erreur inférieure à } \alpha)$? Nous pouvons illustrer cette

méthode par l'étude 62403 de l'EORTC qui teste l'intérêt du pazopanib pour différents types histologiques de sarcomes [6]. Dans cette étude, le critère de jugement principal est le taux de non-progression à trois mois. Un taux de 20 % amène à considérer le traitement comme inefficace (P0), un taux de 40 % (P1) amène à considérer le traitement comme efficace. Un plan de Simon (optimal design) en deux étapes est appliqué ($\alpha = \beta = 10 \%$), avec les règles de décision suivantes: à la première étape (19 patients), l'hypothèse d'un traitement efficace est rejetée si moins de quatre non-progressions à trois mois sont observées et l'étude est interrompue; à la seconde étape, l'hypothèse d'un traitement inefficace est rejetée si au moins 11 non-progressions à trois mois sont observées sur 37 patients. L'étude est stratifiée selon le type histologique (liposarcomes/léiomyosarcomes/synovialosarcomes, etc.). Le recrutement dans la strate « liposarcomes » est interrompu dès la première étape, car trois non-progressions à trois mois sur 19 patients sont observées, soit 15 %, avec un intervalle de confiance à 95 % (IC) de 0 à 32 %. Cet IC exclut les 40 % associés à un traitement efficace, mais inclut les 20 % associés à un traitement inefficace. À l'inverse, dans la strate « léiomyosarcomes » sont observées 18 nonprogressions à trois mois sur 41 patients, soit 44 % (IC: 28-59). L'IC exclut 20 %, on peut rejeter l'hypothèse que le traitement est efficace; L'IC inclut 40 %, on peut accepter l'hypothèse que le traitement est

Download English Version:

https://daneshyari.com/en/article/3979421

Download Persian Version:

https://daneshyari.com/article/3979421

<u>Daneshyari.com</u>