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a b s t r a c t

We introduce the idea of multi-criteria aggregation functions and describe a number of
properties desired in such functions. We emphasize the importance of having an aggrega-
tion function capture the expressed interrelationship between the criteria. A number of
standard aggregation functions are introduced. We next introduce the Bonferroni mean
operator. We provide an interpretation of this operator as involving a product of each argu-
ment with the average of the other arguments, a combined averaging and ‘‘anding” oper-
ator. This allows us to suggest generalizations of this operator by replacing the simple
averaging by other mean type operators as well as associating differing importances with
the arguments.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Problems involving multi-criteria are pervasive in many areas of modern technology. Not only do they appear in decision-
making but they also arise in such diverse areas as pattern recognition, information retrieval, case based reasoning and
database querying among others. A central problem in multi-criteria problems is the aggregation of the satisfactions to
the individual criteria to obtain a measure of satisfaction to the overall collection of criteria. This aggregation process must
be guided by the interrelationship of the individual criteria, the criteria organization. As many different types of criteria rela-
tionships exist in the real world there is a need for many types of formal aggregation operations to enable the modeling of
these numerous types of relationships. In response to this need a formal mathematical discipline called aggregation theory is
emerging [1–4]. Here we contribute to this theory by looking at the Bonferroni mean operator [5,6] and suggesting some
generalizations that enhance its modeling capability. We provide an interpretation of this operator as involving a product
of each argument with the average of the other arguments, a combined averaging and ‘‘anding” operator. This allows us
to suggest generalizations of this operator by replacing the simple averaging by other mean type operators such as the
OWA operator and Choquet integral as well as associating differing importances with the arguments. We that various exten-
sions of the Bonferroni mean can model different degrees of hard and soft partial conjunctions [7].

2. Multi-criteria aggregation functions

In multi-criteria decision-making have a collection A1, . . . ,An of criteria and a set X = {x1, . . . ,xm} of alternatives. For each
alternative xi we have a value Aj(xi) 2 [0, 1] indicating the degree to which alternative xi satisfies criteria Aj. Our objective
is to develop some procedure to select from these alternatives the one that best satisfies the collection of criteria. One prop-
erty often required of such a procedure is what Arrow [8] called indifference to irrelevant alternatives. Essentially this
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property assures that the decision procedure is such that we can’t affect the outcome by introducing alternatives whose sole
purpose is to disturb the process. Formally this property requires that our procedure is such that if the application of
procedure to X = {x1, . . . ,xm} selects x*, Procedure(x1, . . . ,xm) ? x*, then application of Procedure to {x1, . . . ,xm,xm+1} must result
in either x* or xm+1.

One way to guarantee this property of indifference to irrelevant alternatives is to obtain for each alternative xj a valuation
of D(xj) using a function D(xj) = F(A1(xj), . . . ,An(xj)) and then select the alternative with largest value of D. A function such as F
is called a pointwise valuation function. The important feature here is that D(xj) just depends on the satisfaction of the cri-
teria by xj, it does not depend on the satisfactions by any of the other alternatives.

In addition to the above other properties are desired in the valuation procedure. One of these is monotonicity, if xj and xk

are two alternatives such that Ai(xj) P Ai(xk) for all Ai then we require D(xj) P D(xk). Another property is what we shall call
grounding, if Ai(xj) = 0 for all i then D(xj) = 0. If in addition D(xj) = 1 if all Ai (xj) = 1, a condition we shall refer to as being stan-
dard, then F is what is called an aggregation function [1,9]. Letting I = [0,1] then formally an aggregation function is a map-
ping Agg: In ? I having the properties: Agg(0, . . . ,0) = 0, Agg(1, . . . ,1) = 1 and Agg(a1, . . . , an) P Agg(b1, . . . ,bn) if ai P bi for all i.
We shall use the terms aggregation functions and aggregation operators synonymously.

Since the function F should be consistently chosen for all alternatives the pointwise nature of F allows us to simply focus
on just one typical alternative, x, in discussing F. In the following we shall generally use aj to indicate Aj(x).

The actual choice of the aggregation function should be a reflection of our knowledge of the relational organization of the
criteria. In the following we shall discuss some notable aggregation functions and indicate the type of criteria relationships
they can model.

One formulation is D(x) = T(a1, . . . ,an) where T is a t-norm operator [10]. These aggregation functions are used to model
situations when all the criteria are required to be satisfied by a solution. Notable among this class of functions are the fol-

lowing: D(x) = Min(a1, . . . ,an), DðxÞ ¼
Qn

j¼1aj and DðxÞ ¼ Max 0;
Pn

j¼1aj � ðn� 1Þ
� �

.
Another class of functions is D(x) = S(a1, . . . ,an) where S is a t-conorm operator [10]. These are used to model situations

where the satisfaction to any of the criteria is sufficient. Notable among this class of functions are the following:
DðxÞ ¼MaxðajÞ;DðxÞ ¼ 1�

Qn
j¼1ð1� ajÞ and DðxÞ ¼Min 1;

Pn
j¼1aj

� �
.

A general class of functions that can be used to formulate the aggregation function F is the OWA operator [11]. Assume
wj 2 [0,1] are a collection of parameters that sum to one. Letting p(j) be the index of the jth largest of the ai the OWA aggre-
gation is calculated as

DðxÞ ¼ Fða1; . . . ; anÞ ¼
Xn

j¼1

wjapðjÞ

The wj are referred to as the OWA weights and collectively they can viewed as a vector W whose jth component is wj. The
OWA operators are mean type aggregation functions [11].

By assigning different values to the OWA weights we can obtain a wide class of formulations for the aggregation function
F. If w1 = 1 and wj = 0 for j – 1 then D(x) = Maxi(ai) and if wn = 1 and wj = 0 for j – n then D(x) = Mini(ai). If wj = 1/n for all j we
get the usual average, DðxÞ ¼ 1

n

Pn
i¼1ai. We can associate with an OWA operator a measure called its attitudinal character [11]

defined as A�CðWÞ ¼
Pn

j¼1wj
n�j
n�1. It can be shown that A�C(W) 2 [0,1]. We note for the case of Max, A�C(W) = 1, for the case

of Min, A�C(W) = 0 and for the average, A�C(W) = 0.5. Another measure associated with the OWA operator is the measure of
dispersion [11,12], which is defined DispðWÞ ¼ �

Pn
j¼1wj lnðwjÞ.

In [13] Yager suggested a useful approach to obtain the OWA operator. Consider the class of functions f:[0,1] ? [0,1] such
that f(0) = 0, f(1) = 1 and f(x) P f(y) if x P y. We refer to these as BUM functions. Using these functions we can generate valid

weights for an OWA operator, wj ¼ f j
n

� �
� f j�1

n

� �
. An important example is the case where f(x) = x, here we get wj = 1/n. In

[13] Yager related these BUM functions to Zadeh’s concept [14] of linguistic quantifiers. This enabled the formulation of
OWA operators based on linguistically expressed specifications.

The aggregation of criteria using the BUM function can be easily extended to the case where each of the criteria has an
importance weight, ui 2 [0,1]. If we let up(j) indicate the importance weight of the criteria with the jth largest value for ai then

we generate the OWA weights as wj ¼ f Tj

T

� �
� f Tj�1

T

� �
where Tj ¼

Pj
k¼1upðkÞ and T ¼

Pn
i¼1ui. In this special case where f(x) = x

we obtain that wj = uj and hence we get the usual weighted average.

3. Bonferroni mean operators

The wide variety of possible relationships between the criteria in multi-criteria problems motivates great interest in seek-
ing aggregation functions that can be used to model these various possibilities. Here we investigate the capabilities of a class
of aggregation operators called Bonferroni means. The Bonferroni mean was originally introduced in [5] and discussed more
recently in [1,6].

Let (a1, . . . ,an) be a collection of values so that ai 2 [0,1]. Assume p and q P 0, then the general Bonferroni mean of these
values is defined as
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