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We present a new axiomatization of logic for dependencies in data with grades, which 
includes ordinal data and data over domains with similarity relations, and an efficient 
reasoning method that is based on the axiomatization. The logic has its ordinary-style 
completeness characterizing the ordinary, bivalent entailment as well as the graded-
style completeness characterizing the general, possibly intermediate degrees of entailment. 
A core of the method is a new inference rule, called the rule of simplification, from which 
we derive convenient equivalences that allow us to simplify sets of dependencies while 
retaining semantic closure. The method makes it possible to compute a closure of a given 
collection of attributes with respect to a collection of dependencies, decide whether a given 
dependency is entailed by a given collection of dependencies, and more generally, compute 
the degree to which the dependency is entailed by a collection of dependencies. We also 
present an experimental evaluation of the presented method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We present a complete axiomatization of a logic for dependencies in data with grades and an efficient reasoning method 
based on this axiomatization. The dependencies are expressed by formulas of the form

A ⇒ B, (1)

such as{
0.2/y1, y2

} ⇒ {
0.8/y3

}
. (2)

Formulas of the form (2) have two different interpretations whose entailment relations coincide. First, an interpretation 
given by object-attribute data with grades in which (2) means: every object that has attribute y1 to degree at least 0.2
and attribute y2 to degree 1 (i.e. fully possesses y2) has attribute y3 to degree at least 0.8. Second, an interpretation given 
by ranked tables over domains with similarities—a particular extension of Codd’s model of relational data—in which (2)
means: every two tuples that are similar on attribute y1 to degree at least 0.2 and are equal on attribute y2 are similar 
on attribute y3 to degree at least 0.8. We assume that the degrees form a partially ordered set equipped with particular 
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aggregation operations. If 0 and 1 are the only degrees, the first interpretation coincides with the well-known attribute 
dependencies in binary data saying that presence of certain attributes implies presence of other attributes, and the second 
one with functional dependencies in the ordinary Codd’s model.

The logic based on the presented axiomatization obeys two types of completeness. The ordinary-style completeness says 
that A ⇒ B semantically follows from a set T of dependencies if and only if A ⇒ B is provable from T . The graded-style 
completeness characterizes the possibly intermediate degrees of entailment in that it says that the degree to which A ⇒ B
semantically follows from T equals the appropriately defined degree to which A ⇒ B is provable from T , leaving classic 
entailment and non-entailment particular cases. The logic enables a new method of automated reasoning whose efficiency 
derives from a new rule, called a simplification equivalence, which makes it possible to replace theories by equivalent 
but simpler ones. The algorithm we present computes a closure of a given collection of attributes with respect to a given 
collection of formulas. A simple modification of the algorithm results in a procedure that decides entailment, i.e. decides 
whether A ⇒ B follows from T , and more generally, computes the degree to which A ⇒ B follows from T . The experimental 
evaluation we present demonstrates that the proposed method is computationally efficient and outperforms the previously 
proposed method based on the classic Closure algorithm [20].

2. Preliminary notions and results

In this section, we present preliminaries from complete residuated lattices and fuzzy attribute logic. Details can be found 
in [3,13–16].

2.1. Complete residuated lattices and related structures

We use complete residuated lattices as the structures of degrees. A complete residuated lattice is an algebra L =
〈L, ∧, ∨, ⊗, →, 0, 1〉 such that 〈L, ∧, ∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest element, re-
spectively; 〈L, ⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative, associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗
and → satisfy the following adjointness property:

a ⊗ b ≤ c iff a ≤ b → c (3)

for any a, b, c ∈ L. As usual in the context of fuzzy logics in narrow sense, we interpret elements in L as degrees (of truth) 
with the following comparative meaning: if a = ‖ϕ‖e and b = ‖ψ‖e are degrees from L assigned to formulas ϕ and ψ by 
evaluation e and if a ≤ b, then ϕ is less true than ψ under e. Operations ⊗ and → (residuum) represent truth functions of 
logical connectives “fuzzy conjunction” and “fuzzy implication”. Note that from (3) it follows that a ≤ b iff a → b = 1.

Remark 1. Complete residuated lattices include infinite as well as finite structures. For instance, a large family of struc-
tures defined on the real unit interval with its natural ordering with ⊗ being left-continuous t-norms and → being the 
corresponding residua [3,16,19]. An important family of finite and linearly ordered complete residuated lattices results by 
considering finite substructures on t-norm based complete residuated lattices on the real unit interval. In particular, for 
L = {0, 1}, L may be identified with the two-element Boolean algebra of classical logic. Namely, ∧ and ∨ then become the 
truth functions of classical conjunction and disjunction, ⊗ coincides with ∧, and → becomes the truth function of classical 
implication.

We equip complete residuated lattices with an additional unary connective: an idempotent truth-stressing hedge (shortly, 
a hedge) on a complete residuated lattice L is a map ∗: L → L satisfying the following conditions: (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) 
(a → b)∗ ≤ a∗ → b∗ , (iv) a∗∗ = a∗ for each a, b ∈ L. Truth-stressing hedges were investigated from the point of view of fuzzy 
logic in narrow sense by Hájek [17], see also a recent general approach in [11,12]. In fuzzy logics, truth-stressing hedges 
serve as truth functions for unary connectives like “very true”. For instance, Hájek [17] introduces a unary connective “vt” 
and formulas of the form vtϕ which read “ϕ is very true”. Such formulas and evaluated (under e) so that ‖vtϕ‖e = (‖ϕ‖e)

∗
with ∗ being a truth-stressing hedge. Two important boundary cases of hedges are identity (i.e. x∗ = x for all x ∈ L) and 
so-called globalization [23] (i.e. 1∗ = 1 and x∗ = 0 for all 1 
= x ∈ L).

Considering L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 as the structure of degrees, we introduce the basic notions of fuzzy relational sys-
tems. An L-set (a fuzzy set with degrees in L) A in universe Y is any map A : Y → L, A(y) being interpreted as “the degree 
to which y belongs to A”. The collection of all L-sets in universe Y is denoted by LY . A ∈ LY is called crisp if A(y) ∈ {0, 1}
for all y ∈ Y . In that case, we may identify a crisp L-set in Y with an ordinary subset of Y . By a slight abuse of notation, 
if A is crisp, we may write y ∈ A and y 
∈ A to denote that A(y) = 1 and A(y) = 0, respectively. In each universe Y , we 
consider two borderline (crisp) L-sets: 0Y such that 0Y (y) = 0 for all y ∈ Y (an empty L-set in Y ); 1Y such that 1Y (y) = 1
for all y ∈ Y . If Y is clear from the context, we write ∅ and Y instead of 0Y and 1Y , respectively.

Operations with L-sets we use in this paper are induced componentwise by the operations of L. For instance, the inter-
section of L-sets A, B ∈ LY is an L-set A ∩ B ∈ LY such that (A ∩ B)(y) = A(y) ∧ B(y) for all y ∈ Y . The structure of all L-sets 
in Y together with the induced operations is in fact a direct power LY = 〈LY , ∩, ∪, ⊗, →, ∅, Y 〉 of L which is also a complete 
residuated lattice. Moreover, for A, B ∈ LY , we define the degree of inclusion of A in B as follows:

S(A, B) =
∧

y∈Y

(
A(y) → B(y)

)
. (4)
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