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The continuous time Bayesian network (CTBN) enables reasoning about complex systems 
by representing the system as a factored, finite-state, continuous-time Markov process. 
Inference over the model incorporates evidence, given as state observations through time. 
The time dimension introduces several new types of evidence that are not found with static 
models. In this work, we present a comprehensive look at the types of evidence in CTBNs. 
Moreover, we define and extend inference to reason under uncertainty in the presence of 
uncertain evidence, as well as negative evidence, concepts extended to static models but 
not yet introduced into the CTBN model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Probabilistic models, such as Bayesian networks, provide a mathematically rigorous framework for reasoning under uncer-
tainty. Given observations (i.e., evidence) about the system that the model represents, the model can update the posterior 
probabilities of other states of the system in light of that evidence. However, the representation of evidence in Bayesian 
networks has been further extended to allow for uncertainty in the evidence, in which there is uncertainty in the observa-
tions themselves. For example, a medical test might have false positive and false negative rates. Thus, the test result can be 
trusted only to a certain degree, which uncertain evidence is able to capture. Uncertain evidence provides one generalization 
of evidence, in which the evidence also has an associated likelihood.

Furthermore, one can think of negative evidence. Instead of an observation of the system being in a certain state, we 
can observe the system to not be in certain states, but it could be any of several other states. For example, we may be 
modeling a system in which sensors may only be able to detect a subset of the possible states. A negative sensor reading 
would imply that the system is in one of those other states. Negative evidence provides another generalization of evidence, 
in which multiple states can be ruled out instead of a single state being given.

By lifting restrictions on the types of evidence that the models can support, generalizations of evidence make the models 
more powerful and versatile. Rather than having to transform the observations into a form of supported evidence, such as 
treating all observations as certain or ignoring incomplete observations, generalizing evidence allows the observations to be 
used as evidence directly.

As the CTBN is a relatively new model, current CTBN inference algorithms only support certain and positive evidence, 
in which all of the temporal state evidence is trusted with complete confidence and in which the temporal state evidence 
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dictates what the state is, never what it is not. However, in many applications, the evidence may contain errors and can be 
trusted only to a certain degree. In some cases, only subsets of the states may be observable. Here, the model can benefit 
from ruling out certain states by reasoning with negative evidence. Uncertain and negative evidence for CTBNs has not yet 
been defined nor have CTBN inference algorithms been extended to allow for incorporating negativity and uncertainty into 
the temporal evidence. Therefore, this work proposes a definition for uncertain and negative evidence and shows how to 
support the definitions in the context of CTBNs. The introduction of timing information adds another dimension into the 
types of evidence we can apply. We show how combinations of certain/uncertain evidence and positive/negative evidence 
interact. By so doing, we show how the definitions of uncertain and negative evidence provide a generalization of certain 
positive evidence.

2. Background work

In this section, we give the formal definition of the Bayesian network (BN), as well as its temporal version, the dynamic 
Bayesian network (DBN). Next we give the formal definition of the CTBN model, compare and contrast the CTBN and the 
DBN, and then survey existing CTBN applications and extensions.

2.1. Bayesian networks

Bayesian networks are probabilistic graphical models that use nodes and arcs in a directed acyclic graph to represent 
a joint probability distribution over a set of variables [1]. Let P (X) be a joint probability distribution over n variables 
X = {X1, . . . , Xn}. A Bayesian network B is a directed, acyclic graph in which each variable Xi is represented by a node in 
the graph. Let Pa(Xi) denote the parents of node Xi in the graph. The graph representation of B factors the joint probability 
distribution as:

P (X) =
n∏

i=1

P (Xi |Pa(Xi)). (1)

This factorization is induced by the conditional independences in the underlying distribution. Without any factorization, 
the number of parameters required to define the full joint probability distribution is exponential in the number of vari-
ables. By factoring the joint probability distribution to consider only the relevant variable interactions, represented by the 
parent–child relationships in the network, often the complexity of the distribution can be managed.

2.2. Dynamic Bayesian networks

The Bayesian network defined above is a static model. However, we can introduce the concept of time into the network 
by assigning discrete timesteps to the nodes to create a dynamic Bayesian network, a temporal version of a BN.

A dynamic Bayesian network (DBN) is a special type of Bayesian network that uses a series of connected timesteps, each 
of which contains a copy of a regular Bayesian network defined over X indexed by time t (denoted Xt ). The probability dis-
tribution of a variable at a given timestep can be conditioned on states of that variable (or even other variables) throughout 
any number of previous timesteps as well as on other variables within the same timestep. In first-order DBNs, the nodes in 
each timestep are conditionally independent of any nodes further back than the immediately previous timestep, given that 
previous timestep. Therefore, the joint probability distribution for a first-order DBN factors as:

P (X0, . . . ,Xk) = P (X0)

k∏
t=0

P (Xt+1|Xt). (2)

Spanning multiple timesteps, the DBN can include any evidence gathered throughout that time and use it to help reason 
about state probability distributions across different timesteps. Often, the conditional probability tables of the DBN can be 
defined compactly by defining a prior network over X0 and a single temporal network over Xt that represents P (Xt+1|Xt)

for every t . The temporal network Xt is then “unrolled” to consider X1, X2, . . . , Xk for k timesteps.

2.3. Continuous time Bayesian networks

The continuous time Bayesian network was first introduced in [2]. Although its name attempts to draw parallels between 
the conditional independence encoded by Bayesian networks, the CTBN represents a factored Markov process.

Let X be a set of conditional Markov processes {X1, X2, . . . , Xn}, where each conditional process Xi has a finite number 
of discrete states. Formally, a continuous time Bayesian network N = 〈B, G〉 over X consists of two components. The first 
is a Bayesian network B with nodes corresponding to X. This Bayesian network is only used for determining P (X0), the 
initial distribution of the process. The second is a continuous-time transition model G , which describes the evolution of the 
process from its initial distribution, specified as:



Download English Version:

https://daneshyari.com/en/article/398026

Download Persian Version:

https://daneshyari.com/article/398026

Daneshyari.com

https://daneshyari.com/en/article/398026
https://daneshyari.com/article/398026
https://daneshyari.com

