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a b s t r a c t

This article proposes a novel stochastic framework based on cloud theory to handle the uncertainty
effects in the optimal operation of microgrids. In respect of the Monte Carlo simulation (MCS) method,
cloud theory can contain more uncertainty of the problem using the cloud drops. The main concept is
to include the fuzziness and randomness of qualitative parameters and then change them to the quanti-
tative form. Due to the high difficulty and nonlinearity of the problem, a new optimization algorithm
based on krill herd (KH) is devised to search the problem space globally. Also a new modification method
based on Levy flight is proposed to increase the local search ability of the algorithm. In order to see the
high performance and ability of the proposed method, a typical grid connected microgrid with several
dispatchable and non-dispatchable units are considered as the case study.

� 2016 Elsevier Ltd. All rights reserved.

Introduction

The increasing popularity of renewable energy sources has
resulted in high research to find its potential advantage and disad-
vantages. Regarding the advantages, decreasing power losses,
enhancing the voltage profile of the buses, increasing the electric-
ity services and higher reliability can be named [1–3]. Along with
these benefits, there are some disadvantages such as increasing
the intricacy of power grid, changing the efficiency of the available
strategies and additional costs for supporting the infrastructure
requirements and protection issues can be named [4–6]. Nonethe-
less, the current expansion in the wide usage of renewable energy
sources (RESs) reveals their high success to replace the traditional
fossil-fuel based sources as clean and practical alternative energy
source [7,8]. In this regard, microgrid is a new concept to address
some challenges of using RESs in the new systems. By definition,
microgrid is an aggregation of distributed generations (DGs), elec-
trical loads and generation interconnected among them and with
the distribution network [9]. The idea of microgrid has attracted
the attention of many researchers in recent years.

In [10], a smart microgrid is constructed in the laboratory for
showing the efficiency of their intelligent technique for optimally
operating the microgrid in the scheduling time which is one week.
In [11], a mixed-integer linear programming solution is suggested

to decide the optimal power dispatch of DGs in a microgrid incor-
porating RESs. In [12], a multi-agent system is designed to control a
photovoltaics (PV) based microgrid. The capability of power
exchange between the microgrid and the main grid through the
minimization of the total power generation strategy is assessed
in [13]. With the intention of reducing the total system lifecycle
cost, a three phase process including design, sizing and operation
of the microgrid is devised in [14]. In [15], a linear programming
approach is suggested to minimize the cost of a PV-based micro-
grid. So as to see the consequence of storages in the microgrid,
authors in [16] managed a linear programming approach to oper-
ate a microgrid with different load levels. In [17], a real-coded
genetic algorithm based on a three-phase solution of forecasting,
storage and operation was proposed. In [18], an intelligent method
was devised to check the unit commitment problem in a microgrid
incorporating wind turbine (WT) and storages. While each of these
works has proposed valuable results, their major deficiency is
ignoring the uncertainties effects of some sources such as RESs
and market price and load. In order to consider the uncertainty
effects, several works have been implemented to operate the
microgrid in the presence of uncertainty. These methods are
mainly categorized in [19,20] (1) Monte Carlo Simulation (MCS),
(2) analytical methods and (3) approximate methods. MCS is the
most famous and well-liked method in this group. The second
group goes to the analytical methods that utilize some simplifica-
tions in the organization of the uncertain problem to model the
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uncertainty effects with less computational weight than MCS. In
the third group, approximate methods subsist that Taylor series
expansion method [21]; discretization method [22]; common
uncertain source method [23,24]; first-order second-moment
method (FOSMM) [25] and point estimate method (PEM) are
amongst the the majority renowned methods of this set. The last
two groups (analytical methods and approximate methods) are
basic versions of MCS. However, the MCS method can itself be
improved by considering the uncertainty of the standard deviation
of the uncertain parameters. Therefore, this article proposes a
novel method based on cloud theory to model the uncertainties
of the microgrid problem more, efficiently.

This article suggests anewstochasticmethodbasedon cloud the-
ory to reflect the uncertainties of concept in the MCS. The proposed
method canmodelmore information in terms of the uncertain prob-
lem. Cloud model (CM) employs some cloud drops to find more
information in the targets. Inorder to see theperformanceof thepro-
posedmethod, a typicalmicrogridwith someDGs includingWT, PV,
fuel cell (FC), micro turbine (MT) and a Nickel-Metal-Hydride Bat-
tery (NiMH-Battery) as the storage appliance is considered as the
case study. Also, a new optimization algorithm called modified krill
herd (MKH) is suggested to solve the problem optimally. KH algo-
rithm is a novel metaheuristics optimization algorithm that copies
the search performance of krill during the foraging process [26]. In
addition, a satisfactory modification method is devised to authorize
its aptitude for steady and quicker convergence. The rest of this

paper is organized as follows: Section ‘Problem formulation’
explains the objective function and constraints. Section ‘Cloud the-
ory in the stochastic framework’ describes the stochastic framework
based on CM. Section ‘Optimization algorithm’ explains the pro-
posed MKH algorithm. The simulation results are shown in Sec-
tion ‘Results and discussion’. Finally, the main conclusions and
concepts are provided in Section ‘Conclusion’.

Problem formulation

Cost function

The cost function incorporates the cost of power supply by the
main grid, by DGs (FC, WT, PV and MT), by the storages and the
shut-down or start-up of the DGs. The main strategy is that
the microgrid central control will dispatch the power among the
power units according to the economical preferences. The storage
device is charged at light-load hours and discharged at peak-load
hours. This strategy can reduce the cost of the system:
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Nomenclature

X state variables vector
BGi(t) the bid of ith DG at time t
BSj(t) the jth storage device bid at time t
SSj(t) start-up/shut down cost of jth storage de-

vice at time t
SGi(t) start-up/shut down cost of ith DG at time

t
PGrid(t) active power bought (sold) from (to) the

utility at time t
BGrid(t) utility bid at time t
ui(t) state of the ith unit denoting ON/OFF sta-

tuses
n number of the state variables
Ng number of generating units
Ns number of storage devices
Pg vector including the power generation of

all power units
Ug vector including ONN/OFF statuses of all

power units
T number of time intervals
PG,i(t) active power production of ith power unit
PG,i,min(t) minimum active power production of ith

power unit at t
PG,i,max(t) maximum active power production of ith

power unit at t
Ps,j,min(t) minimum active power production of jth

storage device at t
Ps,j,max(t) maximum active power production of jth

storage device
PGrid,min(t) minimum active power production of

the grid at t
PGrid,max(t) maximum active power production of the

grid at t
PL,i(t) the amount of lth load value at time t
NL total number of load levels

Wess(t) amount of stored energy inside the bat-
tery at time t

Wess,max/Wess,min maximum/minimum stored energy inside
the battery

Pcharge/Pdischarge permitted rate of charge/discharge during
a finite time period (Dt)

gcharge/gdischarge battery efficiency during charge/
discharge period

Pcharge,max/Pdischarge,max maximum permitted rate of charge/
discharge during a finite each time period
(Dt)

CLðxÞ membership cloud of L
Ex expectation parameter
En entropy parameter
He hyper entropy parameter
N number of cloud drops
Xb best krill in the population
Vk
r;i velocity of the krill i in the iteration k

Vk
ind;i=V

k
frg;i=V

k
dif ;i induced/foraging/diffusion velocity of ith

krill at the kth movement
q empirical constant factors
Nv number of control variables
xind/frg/dif inertia of induction/foraging/diffusion

motion
e small positive number
rand mathematical operator for random value

in the range [0,1]
f w fitness function of the worst krill in popu-

lation
Np number of population
Iter iteration number
MnK column-wise mean value of the krill pop-

ulation
u1 random value in the range [0,1]
b constant value
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