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a b s t r a c t

This work presents the application of Bilinear Matrix Inequalities to the robust adjustment of Power
System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjust-
ments are sufficient to guarantee robust stability and performance with respect to various operating
points. Making use of the flexible structure of BMIs, we propose an algorithm that guarantees a minimum
damping factor specified for the closed loop system, always using a controller with flexible structure. The
technique used here is the pole placement, whose objective is to place the poles of the closed loop system
in a specific region of the complex plane. The BMIs are linearized using the homotopic method. Results of
tests with a nine-machine system are presented and discussed, in order to validate the algorithm
proposed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Robust control of electrical power systems considering the
small signal modelling has been the subject of many researches
during the last years. The importance of small signal stability
studies is emphasized in [1]. H1 Control was applied to a single
machine operating against an infinite bus in [2], while l – synthe-
sis was used to ensure robust stability and performance of electri-
cal power systems in [3]. Techniques like LQG/LTR were also
explored in [4].

Nevertheless, the most flexible technique in terms of grouping
different requirements involves the use of Linear Matrix Inequali-
ties (LMIs). LMIs have been used in many control applications
[5], and as examples of their applications in electrical power
systems we have [6–9]. In these papers, however, the controller
generated by the LMI algorithm is full order; despite its practical
importance to the power industry, the adjustment of Power
System Stabilizers (PSSs) with pre-defined structure is handled
only in [10].

Ref. [11] applies a H1 control technique called loop shaping
with pole placement to the design of robust controllers for a
16-machine system. LMIs are used, in this case, to mix frequency
domain specifications with time domain specifications. Other

papers that apply H1 robust control to electrical power systems
are [12,13]. These papers use FACTS devices to improve the stabil-
ity and performance of the power system, and the controllers
designed have the same order of the power system model.

Ref. [14] describes a method to design reduced order robust
controllers for electrical power systems. Using LMIs and some
linearizing parametrizations, it proposes an H1 optimization prob-
lem to obtain decentralized robust controllers. These controllers
increase the power system damping, but this is not guaranteed
in all cases since the optimization algorithm does not use pole
placement constraints. Then, just stability is guaranteed.

Ref. [15,16] apply LMIs to robust pole placement for generic
systems, but the controllers obtained are full order, and the formu-
lation does not permit to choose the structure of the controller.

In [9], robust pole placement is performed together with H1
objectives through LMIs, using full order controllers. One of the
drawbacks of this method is that the controller order increases
with the order of the system when more sophisticated models
are used. This same disadvantage affects other robust control
methods, like l-synthesis.

Ref. [10] applies LMIs to electrical power systems stabilization,
pre-defining the structure of the controller and the controller
poles. The results presented are related to a single machine-infinite
bus system. The controller design is performed by using some
results of [17].

Ref. [18] proposes a design method for robust controllers with
pre-defined structure. The optimization problem formulated to
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design the controller is a BMI-problem (Bilinear Matrix Inequality).
The BMI-problem is solved through a successive approximation
algorithm. However, as the method does not use pole placement
constraints explicitly, the controller obtained just guarantees the
power system stability. The robust control formulation is based
on H1 control.

Another work that uses BMIs to design robust controllers is
[19]. In this paper, PSSs and controllers associated to HVDCs are
obtained through a l-synthesis based approach, which is used to
initialize the decentralized controllers. Then, the problem is rewrit-
ten in the form of a BMI problem, which is solved through the
homotopic method. Just the stability of the system is guaranteed
– the method does not ensure a minimum damping for the power
system poles.

Recent works that apply LMIs to generate robust controllers for
power systems include [20], which applies a strategy known as
multi agent system (hierarchized control structure) to improve
stability of large scale power systems (the controllers design algo-
rithm uses LMIs), [21], that integrates two control techniques to
yield damping for low frequency oscillations in large power sys-
tems (it also employes FACTS), and [22], that applies LMIs to guar-
antee robust performance in load frequency control problems.

The main objective of this paper is to create a novel framework
for power system pole placement in a desired region of the com-
plex plane. A decentralized scheme with a pre-defined controller
structure aiming to enhance the dynamic performance of the
power system for various operating points is used. The controller
structure flexibility is an important feature explored in this paper.
At the same time, the use of LMIs and linearized BMIs permits to
work with various operating conditions and specifications, which
is an important characteristic of robust controllers.

The main advantage of using linearized BMIs instead of LMIs is
that the first technique makes possible to deal directly with bilin-
ear problems, with no need to perform changes of variables. These
changes of variables can be very restrictive in some problems, even
making the solution search by the algorithm infeasible.

The application of the proposed approach to a nine-machine
system (New England–New York) is presented. In order to validate
the controller obtained, nonlinear simulations are also performed.
In Section 2, the power system model used in the paper and the
closed loop system as well as its structure are presented. Section 3
depicts the development of the mathematical formulation for pole
placement in a specified region of the complex plane considering
various operating points. In Section 4, experimental results are
shown and discussed. Finally, Section 5 presents the conclusions
of this work.

2. Power system model and controller structure

PSSs are control devices whose function is to stabilize the
unstable modes of the power system and increase the damping
of its critical modes. The aim of stabilizing signals is to provide
damping to the rotor oscillations through the generator excitation
modulation. If the damping is increased, the stable power transfer
limits are also increased, improving the power system perfor-
mance. In order to yield damping, the PSSs must generate electrical
torque components in phase with the rotor velocity variations.

The power system model to be described here is the one gener-
ally used in small signal stability studies [28]. The fundamental
equations that describe the behavior of a power system, linearized
around an operating point, are described in [23]. The generic model
has the following form:

_x ¼ Axþ Bu
y ¼ Cx

; ð1Þ

where x is the state vector, y is the output vector (or measurements
vector), and u is the input vector (or control vector). A, B and C are
matrices that define the dynamic linearized model of the power
system.

The control policy adopted here consists on applying an output
feedback to the system [24]. Moreover, the controller must have a
decentralized structure, another important feature to be consid-
ered in electrical power systems due to the geographically disperse
distribution of machines. Then, each PSS will be connected to a
specific machine of the system, having as input the machine rotor
speed; the output of the PSS is a control voltage to be applied to the
corresponding machine.

In general the practical implementation of a controller with free
structure is infeasible with the tools available in the power indus-
try. On the other hand, if the usual structure defined by the follow-
ing transfer function [24]:

KiðsÞ ¼
ais2 þ bisþ ci

s2 þ ðp1 þ p2Þsþ p1p2
ð2Þ

(where the poles – p1 and – p2 are chosen a priori) is adopted for the
ith PSS, then its implementation can be immediate.

In this scheme with pre-defined poles, the controller design
reduces to choosing the values of ai, bi and ci, which define the gain
and the zeros of the PSS. For the decentralized control scheme, the
transfer function matrix of the controllers will assume the follow-
ing form:

KðsÞ ¼

K1ðsÞ � � � 0

..

. . .
. ..

.

0 � � � KnðsÞ

2
664

3
775; ð3Þ

where n is the number of machines of the power system, and each
Ki(s) has the structure given by Eq. (2).

The block diagram of the closed loop system is shown in Fig. 1.
K(s) is the transfer function matrix of the PSSs (given by Eq. (3)),

and G(s) is the transfer function matrix of the nominal power sys-
tem. The input of K(s) is the vector x whose elements are the rotor
speeds of each machine; the output of K(s) is the vector VS whose
components are the stabilizing signals for each machine. These
signals are compared to reference voltages (components of the
vector VREF), and the errors are applied to the input of the voltage
regulators of each machine. The controllers K(s) (given by Eq. (3))
can be written in state space form as:

_xC ¼ ACxC þ BCy
u ¼ CCxC þ DCy

ð4Þ

There are many state space realizations for Eq. (3). Some of them
can be found in [25].

Since the poles of the PSSs are given a priori, matrices AC and CC

are pre-defined. Matrices BC and DC have a block diagonal structure
whose elements contain the control problem variables (ai, bi and
ci).

Applying the controller of Eq. (4) to the system described by Eq.
(1), the following state space description of the closed-loop system
results:

_x
_xC

� �
¼

Aþ BDCC BCC

BCC AC

� �
x
xC

� �
ð5Þ

Fig. 1. Closed loop power system structure.
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