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a b s t r a c t

The paper reports on the solution of the capacitor placement problem in distribution system considering
uncertainty in the variation of loads. Solution techniques available in the literature generally consider
load variation as deterministic. In the present paper uncertainty in load variation is considered using
fuzzy interval arithmetic technique. Load variations are represented as lower and upper bounds around
base levels. Both fixed and switchable capacitors have been considered and results for standard test sys-
tems are presented.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Shunt capacitors are used in distribution systems as a source of
reactive power. If they are connected with proper location and size,
load terminal voltage can be maintained within the acceptable
limit and the line loss and total system cost can be reduced. As
the load demand on distribution system may vary with time for
effective compensation, capacitors are to be of fixed as well as
switchable in nature, where a minimum capacitor kvar is always
kept connected to the system (fixed capacitor) and additional
capacitors are switched in or out as the load demand varies. Deter-
mination of the size, location and type of such capacitors for a dis-
tribution system is a complex optimization problem and requires
information regarding the load variation of the system with time.

Different solution techniques had been presented by many
researchers in the past for solving the problem of placing capacitor
in distribution system. Modified discrete PSO based solution was
proposed in [3,20]. In [4,5], the capacitor placement was formu-
lated as a mixed integer non-linear problem. [6,16,17] proposes
Particle Swarm Optimization (PSO) based capacitor placement.
Loss saving equation based technique was proposed in [7]. In [8]
heuristics and greedy search technique based solution was pro-
posed. Fuzzy reasoning based method was proposed in [9]. Simu-
lated annealing was proposed in [15] and Genetic Algorithm
based solution has taken in [10,24] respectively. Interior point
based solution was proposed in [11,14]. Extended Dynamic Pro-
gramming Approach was proposed in [12], Plant Growth

Simulation Algorithm and using of loss sensitivity factor was
proposed in [13], heuristic search and node stability based method
was proposed in [18], and bacterial foraging solution was proposed
in [21]. Hybrid honey bee colony algorithm based solution was
proposed in [23] Uncertainty was taken into account in [19].

In all of the solution techniques load demand was assumed to
follow a definite pattern-represented by a number of fixed load
levels. In reality however, the load demand is quite uncertain
and depends upon many factors in such a way that it is impossible
to predict the actual load before the actual occurrence. Load fore-
casts, based upon historic records of load variation can predict a
coarse picture of the probable situation. The actual scenario may
well deviate the predicted one by a considerable margin. Thus
instead of load representation by a number of definite load levels,
probabilistic variation of loads would be a better representation.
The capacitor placement decision based upon the fixed pattern of
load variation thus may lead to an inferior solution than the solu-
tion where probability of load variation over the predicted one is
considered. The present paper thus proposes a method to take
uncertainty of the load variation in the capacitor placement
problem.

Problem formulation

For a distribution network, the loss associated with the reactive
components of branch currents can be written as

PLr ¼
Xn

i¼1

I2
ri � Ri ð1Þ
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where Iri and Ri are the reactive component of branch current and
resistance, respectively of the ith branch.

But, actually Iri is not of fixed value. Because, the load variation
in any power system cannot be truly represented by a single load
curve. Conventional way of representing load variation by a single
load curve basically represents the mean of load variation. A better
representation would be to use a curve like Fig. 1, where instead of
representing by a mean variation, the range of variation is shown.
So in the load duration curve, each load level is represented by a
range of load levels (like Fig. 2) rather than a single load. So it is
better to represent Iri as

Iri ¼ ½Iril; Iriu�

where Iril and Iriu are lower and upper limit of Iri respectively.
Because of this variation in this pattern of the loads, the loss PLr

should be considered as an interval quantity instead of fixed quan-
tity. Therefore, in capacitor placement problem every quantity
should be considered as an interval quantity. For this purpose basic
operation of interval number is to be known which is described in
the next section.

Interval arithmetic

An interval number X = [xl, xu] is the set of real numbers x such
that xl 6 x 6 xu; xl and xu are known as the lower limit and upper
limit of the interval number, respectively. A rational number k is
represented as an interval number K = [k, k].

Let X = [xl, xu] and Y = [yl, yu] be the two interval numbers.
Then addition, subtraction, multiplication and division of these
two interval numbers are defined as below [22]:

X þ Y ¼ ½xlþ yl;xlþ yu� ð2Þ

X � Y ¼ ½xl� yu;xu� yl� ð3Þ

X � Y ¼ ½minðxl � yl;xl � yu; xu � yl;xu � yuÞ;maxðxl � yl;xl

� yu;xu � yl;xu � yuÞ� ð4Þ

X � Y ¼ X � Y�1 ð5Þ

where

Y�1 ¼ ½1=yu;1=yl�if 0 R ½yl;yu� ð6Þ

Also, the distance between these two interval numbers is
defined as [24]:

qðX;YÞ ¼max½jx1� y1j; jx2� y2j� ð7Þ

For power system application, calculations involving complex
numbers, rather than real numbers are needed. Hence, in the next
sub-section, basic operations involving complex interval numbers
are presented.

Complex interval number

Any complex number Z = X + iY; where i is the complex opera-
tor, is said to be a complex interval number if both its real part
(X) and the imaginary part (Y) are interval numbers. Hence, X can
be represented as X = [x1, x2] and Y can be represented as
Y = [y1, y2], where, x1, y1 are the lower limits and x2, y2 are the
upper limits, respectively. The conjugate of a complex interval
number is given by Z� = X � iY: Let Z1 = A1 + iB1 and Z2 = A2 + iB2

be two complex interval numbers. Then the addition, subtraction,
multiplication and division of these two complex interval numbers
are defined as [22]

Z1 þ Z2 ¼ ðA1 þ A2Þ þ iðB1 þ B2Þ ð8Þ

Z1 � Z2 ¼ ðA1 � A2Þ þ iðB1 � B2Þ ð9Þ

Z1 � Z2 ¼ ðA1 � A2 � B1 � B2Þ þ iðA1 � B2 þ A2 � B1Þ ð10Þ

Z1 � Z2 ¼ C þ iD ð11Þ

where C = (A1 � A2 + B1 � B2) � (A2
2 + B2

2) and D = (A2 � B1 � A1 � B2) �
(A2

2 + B2
2).

Nomenclature

PLr active power loss of the system associated with the
reactive components of branch currents for original sys-
tem

Iri reactive component of branch current of the ith branch
for original system

Iri
new reactive component of branch current of the ith branch

for compensated system
Ri resistance, respectively of the ith branch
Iril, Iriu lower and upper limit of Iri respectively

Ic reactive current drawn by the capacitor
PLr

com active power loss of the system associated with the
reactive components of branch currents for compen-
sated system

S loss saving
Vm magnitude of voltage of bus m before compensation
k number of capacitor buses
Qc capacitor size
Vc voltage magnitude vector of capacitor bus

Fig. 1. Load curve considering load variation. Fig. 2. Load duration curve considering load variation.
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