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a b s t r a c t

Among various methods of evaluating reliability of a system, those based on minimal cuts (MC) are more
advantageous. Calculating reliability of a system is easier by means of MCs. In addition, MCs locate
unreliable parts of a system and help the engineer to improve the reliability of the system. Many
algorithms have been investigated to enumerate MCs of a network. In this paper, a new and fast
algorithm is presented that can deal with any undirected graph with multiple sources and sinks
(e.g. power transmission and distribution systems). By defining the new concept of minimal cycles of
the graph, first and second order MCs can be easily searched. Our results show that the proposed
algorithm can find MCs up to second order in any undirected graph through a fast process.

� 2014 Elsevier Ltd. All rights reserved.

Assumptions

(1) Each node is perfectly reliable.
(2) The graph is connected, undirected, free of self-loops and

does not have any parallel edge.
(3) Each edge has two states: working or failed. The states of

edges are statistically independent.
(4) All flows in the network obey the conservation law.

Introduction

Reliability is one of the most important indices for an engineer
when planning and designing a system [1–3]. Reliability evaluation
is significant while operating and controlling the system as well.
Due to the importance of this subject, different techniques have
been proposed to evaluate the reliability of the system. Conditional
probability approach, cut set, tie set, event trees, and fault trees are
some known techniques to determine the system reliability [4,5].

Among the aforementioned techniques, the cut set method is
more advantageous. Systems representing a network such as com-
munication systems, power transmission and distribution systems
and transportation systems can be evaluated in terms of reliability
by finding minimal cuts (MC) of the network graph. By finding
MCs, the system reliability can be calculated using a simple

disjoint product equation. In addition, MCs indicate unreliable
parts of the network and inform the engineer to improve the sys-
tem reliability [6]. A cut set is a set of system components that if
all of them fail, the system fails. An MC is a cut set that all of its
components must fail for the system failure and if any of members
does not fail, the system will continue its work [4,7]. The order of
an MC is the number of members it is consisted of.

A vast number of algorithms have been proposed to solve MC
problem. Some algorithms are based on minimal paths (MP) [8].
An MP is a set of components of a system that constructs a
path between source and sink node of the system, and if any of
them is omitted the path will be cut. In such algorithms, it is
essential to enumerate MPs of the network at first. Hence, some
algorithms have been suggested for this subject [6,9–11] as well.
In these methods there is the ability to search for MCs up to the
desired order of engineer. However, finding all MPs of large
systems is too time consuming and is impractical. Some algorithms
find MCs directly. Each of them uses a particular logic to search
for MCs [12–16]. The searching process for all MCs, is a time
intensive process, and grows exponentially with number of net-
work nodes.

In many systems, it is not required to deduce all of the MCs. In
networks with high reliability components, if the lowest order of
MCs is ‘‘n’’, then it is just enough to search for MCs up to ‘‘n + 1’’
order. Power transmission system is one of such systems. In most
power transmission systems the lowest order of MC is of the first
one, if the substations are considered [5]. Therefore, it is sufficient
to enumerate first and second order MCs. Moreover, in reliability
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optimization of large systems, lots of these processes have to be
executed [17,18]. Thus, it is impractical to find all MCs.

In systems containing multiple sources and sinks, MCs of all
sink nodes must be enumerated. Just some of the algorithms in
the literature find MCs in an efficient way for these networks
[13,14]. Those algorithms are effective which search for MCs of
whole node pair of sources and sinks in one procedure. The algo-
rithm in [13] is known as one of the best algorithms to search
for all MCs in such networks. It enumerates MCs for all sink nodes
in an efficient way and a reasonable computation time. The disad-
vantage of this algorithm is inability to find MCs up to the desired
order. This algorithm is used to examine validity of our proposed
algorithm.

The main purpose of this paper is to introduce a new algorithm
for finding MCs up to second order in a minimum possible compu-
tation time in networks containing multiple sources and sinks. The
algorithm is independent of the number of sources or sinks, and it
can be applied to every undirected graph.

The organization of this article is as it follows: Section ‘Prelimi-
naries’ explains the basic elements and fundamental concepts of
our algorithm. In Section ‘Description of our algorithm’ we present
the proposed algorithm in detail. In Section ‘Testing the proposed
algorithm’ the algorithm is tested on eleven benchmark graphs
and some test power transmission systems. Concluding remarks
are given in Section ‘Conclusion’.

Preliminaries

Before defining our algorithm, some useful results of graph the-
ory must be introduced. In undirected and connected graphs,
removing an MC from the graph will divide it into two connected
subgraphs. If any member of an MC is omitted from the set, it is
no longer an MC.

For a graph G(V, E), the number of |E| cases as C = {euv}, and
|E|(|E| � 1)/2 cases as C = {euv, emn} must be examined to find
FOMCs and SOMCs respectively. The aim of this section is to intro-
duce theorems to limit the space of search for FOMCs and SOMCs.
By providing Theorems 1 and 2 the search space will significantly

become smaller. Before presenting Theorems 1 and 2 some proper-
ties, lemmas and corollaries must be defined.

Property 1. If C is an MC, and edge eij 2 C, then there is not any path
from node i to node j in G(V, E – C).

The corollary below is directly derived from Property 1.

Corollary 1. Let C � E be an edge set, and eij 2 C. Then, C is not an MC
if there is a path from node i to node j in G(V, E – C).

Property 2 is obtained from definition of a cycle:

Property 2. Let edge set M be a cycle of G(V, E). Then M � {euv} is a
path from node u to node v of G(V, E � {euv}).

Theorem 1. If M is a cycle of G(V, E), and euv 2M, then {euv} is not an
FOMC.

Proof. From Property 2, there is a path from node u to node v in
G(V, E � {euv}), thus from Corollary 1, {euv} is not an MC. h

Lemma 1. If C = {euv, emn} is a SOMC, then there is at least one cycle
containing both euv and emn, and none of them does not belong to any
cycle singly.

Proof. Since C = {euv, emn} is a SOMC, therefore none of {euv} and
{emn} is an MC. Hence, from Corollary 1, there is a path from node
u to v in G(V, E � {euv}) call Puv and a path from node m to n in
G(V, E � {emn}) call Pmn. From Property 1, there is no path from
node u to v and from node m to n in G(V, E � {euv, emn}).
G(V, E � {euv}) certainly has the path Puv from node u to v, but
G(V, E � {euv, emn}) does not contain any path from node u to v.
After removing another edge emn from the graph, Puv is cut. Thus,
it means emn 2 Puv It can be similarly proved that euv 2 Pmn from
definition of a cycle, Pmn [ emn and Puv [ euv are cycles and may
be identical. Both euv and emn are members of these cycles. Hence
this lemma is true. h

Nomenclatures

Acronyms
MC/MP minimal cut/path
FOMC first order MC
SOMC second order MC

Notations
|�| number of elements of �.
G(V, E) a connected and undirected graph with the node set V

and the edge set E. For example, Fig. 1 represents a
graph with V = {s, u, v, m, n, t} and E = {esu, esm, euv,
emn, evm, evt, ent}

euv euv 2 E is the undirected edge from node u to node v.

Path P = {ex1x2 ; ex2x3 ; . . . ; exk�1xk } (exixj 2E) is a path from node x1

to xk with the length of k � 1, e.g. P = {esu, euv, evt} is a
path from node s to t of the graph in Fig. 1

Reliability the probability that there is at least one path of work-
ing edges between sources and all sink nodes (in net-
works with multiple sources and sinks)

Connected graph a graph which has at least a path between each
of its node pairs

Cut a subset of E that if is omitted from G(V, E), it is no long-
er connected

MC any cut that if any of its members is omitted, it is no
longer a cut

FOMC the edge set C = {euv} is an FOMC of G(V, E), if G(V,
E � {euv}) is no longer connected and is consisted of
two connected subgraphs

SOMC the edge set C = {euv, emn} is a SOMC of G(V, E), if G(V,
E � {euv, emn}) is no longer connected and is consisted
of two connected subgraphs, and none of {euv} and
{euv} is an FOMC

MC(t) an MC isolating sink node t from all source nodes
Cycle let P be a path from node u to node v of G(V, E) and euv -

2 E, then M = P [ euv is a cycle. The graph in Fig. 1 has
three cycles

Minimal cycle let P be the shortest path or one of the shortest
paths from node u to v of G(V, E � {euv}), and
euv 2 E, then M = P [ euv is a minimal cycle. For
example, for the graph of Fig. 1, there are two
paths with the shortest possible length of 3
between the nodes m and v in G(V, E � {emv})

Adjacent node node u is adjacent to node v if euv 2 E
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