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a b s t r a c t

In this paper we address the problem of aggregating wind power. The purpose of the methodology
presented here is to avoid the assumption of extreme values of correlation, meaning perfect dependence
or perfect independence of the production. That is, we accept intermediate values of correlation, which
we argue is of special interest for small-scale siting analysis, where the fluctuations of wind power
production affect the capacity value or the size of energy storage.

We provide a formulation that is based on the integration of the joint probability density function (PDF)
of the wind power. We formulate this PDF by means of copula theory in order to cope with the involved
representation of the marginal PDFs.

As a result, we characterize the PDF of the aggregated wind power and the associated duration curve.
We also present a simple formulation of the joint forced outage rate. These serves us for verifying,
through a case analysis based on NREL datasets, that in some cases the assumption of extreme
dependence in small-scale sites does not hold.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The joint production of wind energy by a cluster of generators is
characterized by uncertainty, which stems both from the individ-
ual wind speed uncertainty and from the correlation between wind
sites. This latter has a fundamental impact on the joint production,
because if the generators are not producing in unison, the joint
production will be less fluctuating; less affected by individual fluc-
tuations. In small-scale wind power integration—the subject of this
paper—the role of the correlation is exacerbated. This is the case of
dispersed generation, microgrids, or in general a cluster of wind
generators that is considered to be an only producer. In such cases,
the correlation may be non-negligible, and we may even find a per-
fect coherence between pairs of generators. Obviously, this largely
affects the capacity credit of the cluster or, in the case of islanded
microgrids, the size of the required storage.

Certainly the most direct approach to aggregating generation or
loads when they are randomly fluctuating is to take one of the
extreme values of dependence. If on the one side the power is

assumed to be perfectly coherent in all the generators, namely
fluctuating in unison, the aggregated power is obtained as the
power in one generator times the number of generators (or if the
powers are different in value, as the sum of powers). On the other
extreme, if it is assumed a perfect independence between individ-
ual powers (or loads), the joint probability of a given value of
aggregated power is equal to the product of the probabilities of
every individual (marginal) power. In this case if the statistical
characterization is done by means of probability density functions
(PDFs), then the joint PDF is again the product of the marginal
PDFs. And as long as the aggregated power can be generally
obtained as the convolution of the joint PDF over the power
domains, the decomposition into a product of marginal PDFs
facilitates the task of solving the problem.

It can be argued that in some cases this simplified approach
may well serve the purpose of the investigation. For instance in
[1], Vallée et al. exploited both extreme values of dependence to
investigate the reliability of a power system. They claimed that
the two extreme values were representative of the worst and best
scenarios. In particular, perfect dependence in their four-area
power system represented the worst scenario, because the wind
power fluctuations were amplified. Conversely, perfect indepen-
dence produced a ‘‘softening’’ of the wind power fluctuation, which
yielded the minimum reserve requirements. For optimization
purposes of hybrid generation systems, Tina et al. also exploited
the extreme dependence approach [2,3]. In this case they only
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considered perfect independence, arguing that solar and wind
energy could be assumed to be perfectly independent, and that
otherwise a time scale sufficiently small might be chosen. The
other extreme, perfect dependence, can be noted in for instance
[4], where the productions of all generators in a wind farm were
assumed to be coherent.

An approach based on extreme dependence—either perfect
dependence or perfect independence—may not always be adequate,
however. An indication of the need for intermediate dependence
analysis may be induced for instance from Østergaard’s work [5],
in which the author reflects on the issue that the larger the geo-
graphical extension of the area of Denmark in which wind power
is exploited, the lower are the required reserves—an indication of
the progressive ‘‘softening’’ of fluctuations when the generators
are geographically spread. That is, the work of Vallée et al. provides
the extreme values of reserves, but Østergaard narrows the reserve
requirements and indicates that they depend on the spread of gen-
erators. This is particularly more relevant if we review Holttinen’s
work in [6], where the correlation between wind speeds as a func-
tion of distance in Sweden is represented as a decaying exponential
r ¼ e�

d
500; where d is the distance in kilometers. This means that the

correlation varies from r � 1 for nearby sites to as low as 0.6 by a
few hundred kilometers. It also means that to achieve perfect inde-
pendence, we must compare sites in the thousands of kilometers
apart. Similar results can be found in [7]. (Ultimately, these results
agree with our own results from a survey conducted by using the
wind speed year samples of 210 sites from NREL dataset, hosted
in http://wind.nrel.gov/, comprising 21,945 pairs of generators with
the pair proximity ranging from 1.3 through 390 km. Again, the
value of r was between approximately 0.5 and 1.)

The objective of our paper is to introduce a methodology to
compute the aggregated power, which does not rely on the
assumption of extreme dependence. We will argue in the last part
of this paper, when we investigate the power duration curves and
the forced outage rates, that the approaches based on extreme
dependence give remarkably poor results in wind power scenarios
where the values of correlation are intermediate. This is specially
relevant, following the above discussion, in the analysis of small
areas of wind production where the dependence is expected to
be from medium to high; sometimes almost perfect.

The methodology that we propose can be boiled down to three
major operations, (i) the statistical characterization of the univari-
ate marginals, (ii) the statistical characterization of the multivariate
dependence structure, and (iii) the wind power aggregation proper.
By characterization we denote the parametric representation of the
cumulative distribution (CDF) and probability density (PDF)
functions. And eventually through aggregation, we will obtain
the PDF of the aggregated wind power and the duration curve—a
particular interpretation of the wind power CDF.

Importantly, in the statistical characterization we shall describe
not only the wind speed random variables, but also wind power.
The difference between both variables will be evident and relevant,
because the wind power distribution function is non-smooth,
unlike the wind speed distribution. Notably, we will exploit this
feature found in the wind power distribution to improve the statis-
tical characterization of the aggregated wind power by incorporat-
ing an interpretation of the forced outage rate (FOR) based on
copula calculations. This FOR index has been employed in reliabil-
ity analysis [8–10], and it has been computed by means of bin
counts in [1] (without considering intermediate dependence) or
by intensive Monte Carlo simulations in [11]. Our proposal based
on copula theory—a byproduct indeed of the characterization of
the aggregated power distribution—will demonstrate to be easier
and straightforward to apply, without the need of intensive
simulations.

Methodology

Marginals

We begin by presenting the random vectors which form the core
of the statistical characterization, concentrating in this Section on
the transformation existing between them. In an N-generator anal-
ysis, let W ¼ ðW1; . . . ;WNÞ be the vector of random wind speeds.
The corresponding vector of wind powers is P ¼ ðP1; . . . ; PNÞ. We
assume that each i-th component of W is related with the corre-
sponding i-th entry of P through a known wind speed–power curve
(WSP) of the turbine located at the i-th site.

There is a large deal of research work on modeling wind speed
distributions. Preferably Weibull, but also Rayleigh (a special Wei-
bull case in which the shape is 2), inverse Gaussian, lognormal, or
even bimodal distributions, have been published to characterize
the random distribution of wind speed. In what follows, these wind
speed cumulative distribution functions (CDF) and probability dis-
tribution functions (PDF) will be denoted by FWi

and fWi
. These are

the marginal functions of i-th site. (Alternatively when we refer to
the multivariate joint distribution function of wind speed, we will
denote it by FW.)

It is in wind power, however, that we are interested here. More
particularly, we aim at finding the value of the total aggregated
power produced by N generators, which we will denote by
PT ¼

PN
i¼1Pi. Obviously, PT is also a random variable—the sum of

random variables—with a distribution FPT . Characterizing this dis-
tribution is one of the aims of this paper. We have divided the
problem into two subproblems: (i) the characterization of the mar-
ginal wind power CDFs and (ii) the aggregation proper of the
marginals.

The WSP characteristic of most wind turbines is a piecewise-
defined function consisting of four main sections, which are con-
ventionally separated by three characteristic wind speeds; see
hðwiÞ in Fig. 1. The cut-in speed, wi, is the lower wind speed at
which the turbine can produce power. Rated speed, wr, is the wind
speed above which the output power is maximum. Finally, cut-out
speed, wf , represents a higher value of the wind speed limit, above
which pitching the blades cannot reduce the power output to be
below the rated power. Above wf the power output is then null.

This special definition of the WSP function makes it problematic
finding FPi

from FWi
. Although FWi

is smooth, h is not, and thus it is
necessary to eventually characterize FPi

also as a piecewise
function:

FPi
ðpiÞ ¼

1� FWi
ðwfiÞ þ FWi

ðwiiÞ; if pi ¼ 0p:u:

1� FWi
ðwfiÞ þ FWi

½h�1ðpiÞ�; if 0 < pi < hðwriÞp:u:
1; if pi ¼ 1p:u:

8><
>:

ð1Þ

The first line of (1) indicates that the probability of null Pi is
equal to the probability that the corresponding wind speed is
either above or below the cut-out and cut-in wind speeds, respec-
tively. The third line indicates that the probability that the power
output is below the rated power is one. Finally the second line
includes a straight transformation from FWi

into FPi
, which can be

performed within the cut-in and rated wind speeds, where the
transforming function h is invertible. (FPi

ðpiÞ ¼ pr Pi 6 pif g ¼
pr hðwiÞ 6 pif g ¼ pr wi 6 h�1ðpiÞ

n o
¼ FWi

½h�1ðpiÞ�.) Note that for
proper definition, the probability that the wind speed exceeds wfi

must be added to FWi
½h�1ðpiÞ� in this second line.

The wind power CDF, FPi
, is thus expressed in terms of the wind

speed CDF, FWi
, and the WSP curve, hðwiÞ. Fig. 1 shows the remark-

able difference between FWi
in panel (a) and FPi

in panel (b), a con-
sequence of the combination of both functions. Particularly,
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