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a b s t r a c t

Lithium-ion batteries have been widely used as the energy storage systems in personal portable electron-
ics (e.g. cell phones, laptop computers), telecommunication systems, electric vehicles and in various aero-
space applications. To prevent the sudden loss of power of battery-powered systems, there are various
approaches to estimate and manage the battery’s state of charge (SOC). In this paper, an artificial neural
network–based battery model is developed to estimate the SOC, based on the measured current and volt-
age. An unscented Kalman filter is used to reduce the errors in the neural network-based SOC estimation.
The method is validated using LiFePO4 battery data collected from the Federal Driving Schedule and
dynamical stress testing.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion (Li-ion) batteries have attracted attention due to
their high energy density and long cycle life compared with other
battery chemistries. State of charge (SOC) estimation provides
information about when a battery needs to be recharged and
allows battery management systems (BMSs) to prolong the battery
life by preventing batteries from over-charging or over-
discharging.

SOC is defined as the percentage of remaining capacity relative
to the maximum capacity of the battery. Many SOC estimation
approaches have been developed, among which Coulomb counting
[1,2] is the most popular one. In Coulomb counting, the current is
integrated over time to estimate SOC. Although Coulomb counting
is easy to implement, the measurement and calculation errors can
be accumulated by the integration function, and thus the estima-
tion of SOC tends to drift from the actual values. The voltage-based
method [3] estimates the SOC based on a voltage–SOC lookup
table. However, voltage-based methods do not work well for Li-
ion batteries because of their flat plateau of discharge characteris-
tics. To provide more robust estimates, equivalent circuit models
(ECMs) have been proposed for SOC estimation using extended
Kalman filters (EKFs) [4–9] and unscented Kalman filters (UKFs)
[10,11]. Plett [4,8,9] developed an enhanced self-correcting model

that takes hysteresis effects into consideration to estimate SOC
using EKFs. He et al. [7] proposed an improved Thevenin model
wherein SOC is estimated using EKFs.

Studies have been conducted to establish data-driven models
for battery modeling and SOC estimation that do not require
detailed physical knowledge of Li-ion batteries. The commonly
used data-driven models include support vector machines [12–
14] and neural networks [15–18]. For example, Hansen and Wang
[12] developed a support vector machine (SVM) based method for
SOC estimation. The estimator was validated using US06 dynami-
cal operation data with a root mean square (RMS) error of less than
6%. Anton et al. [13], proposed a state-of-charge estimator using
support vector machine. The inputs to SVM were voltage, current
and temperature, and output was SOC, with training data and test-
ing data under the same loading condition. Therefore, the general-
ization ability of the proposed SVM was unknown. Lee et al. [15]
developed an SOC estimation approach based on a fuzzy neural
network with B-spline membership functions. But this method
was only tested using data obtained by constant current discharge,
which is different from the real-life loading condition of many bat-
tery powered systems like EVs and UAVs. Cheng et al. [16] pro-
posed a SOC estimation method for Ni–MH batteries using a
three-layer feed-forward neural network; where the inputs to
the neural network (NN) were battery current, temperature, volt-
age and its first and second derivatives. Though Cheng’s method
is promising, the estimation results show high estimation variance,
probably due to over-fitting or under-fitting, which is a common
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problem for data-driven methods. Therefore, researchers have
been developing hybrid methods to improve the accuracy of
data-driven SOC models. Charkhgard and Farrokhi [19] used an
extended Kalman filter (EKF) to infer the SOC based on a radial
basis function neural network battery model. However, EKF is only
accurate to first order or second order of a nonlinear system in the
sense of Taylor expansion. Furthermore, only three inputs were
used in Charkhgard and Farrokhi’s model to train the NN, namely,
the voltage from the previous sample and the current and SOC of
the present sample, which is not sufficient to capture the capaci-
tive effects in the Li-ion battery system dynamics.

In this paper, we develop a SOC estimation method based on
neural network and unscented Kalman filter (UKF). To capture
the time constant of the battery dynamics, multiple current, volt-
age, and temperature measurements are used as inputs to the neu-
ral network, and the SOC is used as the neural network output. The
number of inputs in a neural network and the neural network
structure are determined by a constructive method, where the gen-
eralization capability and the accuracy of the neural network are
optimized. In order to reduce the estimation error of the neural
network, a UKF is developed to filter out the outliers in the neural
network estimation. UKF has been proven to be better than EKF
[20,21] because it is accurate to 3 orders for any non-linear system.
We train our SOC model using dynamical stress testing data and
validate it using data from the Federal Urban Driving Schedule
(FUDS) and US06 Highway Driving Schedule. This paper is orga-
nized as follows: Section 2 reviews the basic principles of NN, illus-
trates the generation of the training data and testing data, and
discusses the methodology to select the optimal neural network
structure. Section 3 develops a UKF algorithm to reduce SOC esti-
mation error and Section 4 gives the SOC estimation results of
our approach. Section 5 presents our conclusions.

2. Neural network SOC model

Neural networks (NNs) are computational intelligence tools
that have been widely used for system modeling [22,23], anomaly
detection [24], prognostics [25], and classification [26]. An NN
comprises a set of interconnected simple processing elements
called neurons that mimic the information processing and

knowledge acquisition capabilities of the human brain. There are
several characteristics of NNs that make them an attractive choice
for system modeling. NNs can fit any nonlinear function with suf-
ficient neurons and layers to make them suitable for complex sys-
tem modeling. NNs can learn and update their internal structure to
adapt to a changing environment. NNs are efficient in data process-
ing because of their parallelism in computation. NNs are data-
driven in nature and able to build a system model without detailed
physical knowledge of a system [27].

2.1. Theory of neural network

A neural network consists of an input layer with nodes to rep-
resent the input variables, one or more hidden layers with nodes
to mimic the nonlinearity between the system input and output,
and an output layer to represent the system output variable.
Fig. 1 shows the structure of a feed-forward neural network for
SOC estimation. The inputs to the neural network are current (I),
voltage (V), and temperature (T), and the output is the battery
SOC. The nodes between two adjacent layers are interconnected.
The input layer passes on the inputs with weights; no processing
takes places in this layer. The hidden layers and output layers are
processing layers with the activation function at each node. The
hyperbolic tangent sigmoid function is often used in the hidden
layer as an activation function. It is defined as:

F tansigðuÞ ¼
2

1þ e�2u
� 1 ð1Þ

In the output layer, the linear transfer function is used as an
activation function for regression and fitting problems, as:

F linðuÞ ¼ u ð2Þ

The output of a processing node j in the hidden or output layer
is given by:

yj ¼ FðujÞ ¼ F
X

i

xijxi þ bj

 !
ð3Þ

where xi is the output from the ith node at the previous layer, xij is
the weight of the interconnection from the ith node of the previous

Fig. 1. The structure of a multilayer feed-forward neural network.
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