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a b s t r a c t

Electrical load time series are non-stationary and highly noisy because a variety of factors affect electrical
markets. The direct forecasting of electrical load with noisy data is usually subject to large errors. This
paper proposes a novel approach for short-term load forecasting (STLF) by applying wavelet de-noising
in a combined model that is a hybrid of the seasonal autoregressive integrated moving average model
(SARIMA) and neural networks. The process of the proposed approach first decomposes the historical
data into an approximate part associated with low frequency and a detailed part associated with high fre-
quencies via a wavelet transform. A SARIMA and a back propagation neural network (BPNN) are then
established by the low-frequency signal to forecast the future value. Finally, the short-term load is fore-
casted by combining the prediction values of SARIMA and BPNN, and the weights of the combination are
determined using a variance–covariance approach. To evaluate the performance of the proposed
approach, the electricity load data in New South Wales, Australia, are used as an illustrative example.
A comparison of the results with other models shows that the proposed model can effectively improve
the forecasting accuracy.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Electric load forecasting is an essential subject in electric power
system operations and planning. Forecasts are needed for a variety
of utility activities, such as generation scheduling, the scheduling
of fuel purchases, maintenance scheduling and security analysis.
Unfortunately, the electric load is essentially dynamic, nonpara-
metric, and chaotic in nature. In fact, many factors affect the
electric load in a region, such as the population, economic develop-
ment, social change, weather conditions and industrial productions
in the region, electricity price, and holiday periods. This influence
implies that accurate load forecasting is not only of great interest
but also extremely challenging to power system administrators.

Various load-forecasting techniques have been proposed and
successfully applied to predict the different classes of power sys-
tem load requirements in the past two decades. Generally, these
methods used in the literature can be divided into two categories:
statistical models and artificial intelligence (AI) models. Statistical
models are identical to the direct random time-series model,
including linear regression, the exponential smoothing method,

and autoregressive integrated moving average (ARIMA) models
[1–3]. They do well in short-term forecasts, and have been tested
in short-term forecasting [4,5]. However, they are not perfect in
forecasting. First, most of statistical models assume that the elec-
tric loads data is normally distributed, but it is well known that
electric loads series is not a normally distributed. Second, the inter-
mittent and stochastic characteristic of electric loads series need
more complex functions for capturing the nonlinear relations,
but most of these models are based on the assumption that a linear
correlation structure exists among time series values. To overcome
these limitations, many AI approaches have been proposed to
address these problems. These AI approaches, which primarily
include neural networks [6–19], expert system-based methods
[20–22], fuzzy logic-based approaches [23,24], and genetic algo-
rithms [25], have yielded impressive results in dealing with electric
load prediction. However, electric load series often contain both
linear and nonlinear patterns. Many research efforts have indicated
that prediction methods depend on the data patterns and there is
no single best prediction method that can be applied to any data
patterns [26,27]. Therefore, combining different models can
increase the chance of capturing different patterns in the data
and improve the forecasting performance. This approach has led
to the rapid development of hybrid models based on popular
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methods. For instance, Sharaf and Tjing [28] proposed a novel
neuro-fuzzy short-term load forecasting model based on neural
networks and fuzzy logic. Huang et al. [29] proposed a Grey-
Markov forecasting model to forecast the electric power demand
in China. Pao [30] applied hybrid non-linear models for energy
consumption forecasting in Taiwan. Zhang and Dong [31] proposed
an adaptive neural-wavelet model for short-term load forecast-
ing in the competitive electricity market, and El-Keib et al. [32]
and Maia and Goncalves [33] applied a hybrid model for load
forecasting.

The wavelet transform can effectively remove the useless infor-
mation in a time series. The seasonal autoregressive integrated
moving average model (SARIMA) mainly addresses linear relation-
ships, while the back propagation neural network model (BPNN)
can handle nonlinear patterns. Considering the actual features of
power load, a wavelet de-noising-based combined model (WDCM)
for short-term electrical load forecasting is proposed in this paper
by applying a wavelet transform to a hybrid model. This hybrid
model consists of SARIMA and BPNN. In this model, the original
data are first decomposed into an approximate part associated
with a low frequency and a detailed part associated with high fre-
quencies using the wavelet transform. SARIMA and BPNN are then
established using the low-frequency signal to forecast the future
value. Finally, the short-term load is forecast by combining the
predicted values of SARIMA and BPNN, and the weights of the com-
bination are determined using the ‘‘variance–covariance’’
approach. To evaluate the performance of the proposed approach,
the electricity load data in New South Wales, Australia, were used
as an illustrative example. A comparison of the results with the
individual models and the basic combined model shows that the
proposed model can effectively improve the forecasting accuracy.

The remaining sections of this paper are organized as follows.
‘Individual forecasting models used in the combined model’ intro-
duces the essential methods of wavelet de-noising, SARIMA, and
BPNN. The hybrid methodology is introduced in ‘The wavelet
de-noising-based combined model (WDCM)’. ‘Experimentation
design and results’ presents the experimentation design and
results. Finally, concluding remarks and future work are given in
‘Conclusions and future work’.

Individual forecasting models used in the combined model

Wavelet transform

A wavelet transform is used to analyze the non-stationary time
series in order to generate information on both the time and fre-
quency domains. This transform may be regarded as a special type
of Fourier transform at multiple scales that decomposes a signal
into shifted and scaled versions of a ‘‘mother’’ wavelet. The contin-
uous wavelet transform, denoted by CWT, is defined as the convo-
lution of a time series xðtÞ with a wavelet function wðtÞ [34]:
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where a is a scale parameter, b is the translational parameter and �
is the complex conjugate of wðtÞ. Let a ¼ 1=2s and b ¼ k=2s, where s
and k belong to the integer set Z. The CWT of xðtÞ is a number at
ðk=2s;1=2sÞ on the time-scale plane. It represents the correlation
between xðtÞ and w�ðtÞ at that time-scale point. A discrete version
of Eq. (1) is thus obtained as
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which separates the signal into components at various scales corre-
sponding to successive frequencies.Note that the DWT corresponds

to the multi-resolution approximation expressions for the analysis
of a signal in many frequency bands (or at many scales). In practice,
multi-resolution analysis is carried out by starting with two chan-
nel filter banks composed of a low-pass and a high-pass filter, and
each filter bank is then sampled at a half rate of the previous fre-
quency. The number of steps of this de-composition procedure will
depend on the length of the data. The down sampling procedure
maintains the scaling parameter constant ð1=2Þ throughout succes-
sive wavelet transforms [35].

Over the past decade, DWT has been well developed and
applied to analyze the signals in various fields [36]. In this study,
DWT is utilized to remove noise from the electric load data for pre-
diction purposes.

Seasonal autoregressive integrated moving average model (SARIMA)

Introduced by Box and Jenkins [37,38], the SARIMA model,
which originates from the autoregressive model (AR), the moving
average model (MA) and the autoregressive and moving average
model (ARMA) models [39,40], is a classical statistical forecasting
tool and has become one of the most popular models for time ser-
ies forecasting analysis. Because the application of this model is
very common, it is only briefly described here.The mean value of
the time series fxt t ¼ 1;j 2; . . . ; kg is assumed to be zero. A non-
seasonal ARIMA model of order (p,d,q) (denoted by ARIMA
(p,d,q)) representing the time series can be expressed as

xt ¼ /1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ et � h1et�1 � h2et�2 � � � �
� hqet�q ð3Þ

or

/ðBÞrdxt ¼ hðBÞet ð4Þ

where xt and et are the actual value and random error at time period
t, respectively; /iði ¼ 1;2; . . . ; pÞ is a finite set of parameters and is
determined via a linear regression; hjðj ¼ 1;2; . . . ; qÞ is a finite set
of weight parameters; p is an integer and often referred to as orders
of the autoregressive; q is an integer and often referred to as orders
of the moving average; B denotes the backward shift operator,
rd ¼ ð1� BÞd; d is the order of regular differences; /ðBÞ and hðBÞ
are defined as /ðBÞ ¼ 1� /1B� /2B2 � � � � � /pBp and hðBÞ ¼ 1� h1

B� h2B2 � � � � � hqBq, respectively.
Particularly, et is assumed to be an independent and identically

distributed normal random variable with mean zero and variance
r2, and the roots of /ðxÞ ¼ 0 and hðxÞ all lie outside the unit circle
[41]. Similarly, a seasonal ARIMA (SARIMA) model can be written
as follows (using the second expression):

/ðBÞwðBsÞrdð1� BsÞDxt ¼ hðBÞHðBsÞet ð5Þ

where wðBsÞ ¼ 1� w1Bs � w2B2s � � � � � wpBps; hðBsÞ ¼ 1� h1Bs � h2B2s

� � � � � hqBqs; D is the number of seasonal differences, and s is the
period. If the time series mean is l–0, we replace xt with xt � l.

The choice of p,d,q, and s is very important in the SARIMA
model building process, which is typically repeated several times
until a satisfactory model is finally selected. The final selected
model can then be used for prediction purposes. In this paper,
we selected p = 2, d = 0, q = 1, and s = 24.

Back propagation neural network (BPNN)

When the linear restriction of the model form is relaxed, the
possible number of nonlinear structures that can be used to
describe and forecast a time series is enormous. Artificial neural
networks are one of these models that can approximate various
nonlinearities in the data.
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