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a b s t r a c t

This paper presents quasi-oppositional differential evolution to solve reactive power dispatch problem of
a power system. Differential evolution (DE) is a population-based stochastic parallel search evolutionary
algorithm. Quasi-oppositional differential evolution has been used here to improve the effectiveness and
quality of the solution. The proposed quasi-oppositional differential evolution (QODE) employs
quasi-oppositional based learning (QOBL) for population initialization and also for generation jumping.
Reactive power dispatch is an optimization problem that reduces grid congestion with more than one
objective. The proposed method is used to find the settings of control variables such as generator termi-
nal voltages, transformer tap settings and reactive power output of shunt VAR compensators in order to
achieve minimum active power loss, improved voltage profile and enhanced voltage stability. In this
study, QODE has been tested on IEEE 30-bus, 57-bus and 118-bus test systems. Test results of the pro-
posed QODE approach have been compared with those obtained by other evolutionary methods reported
in the literature. It is found that the proposed QODE based approach is able to provide better solution.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

The reactive power dispatch (RPD) plays an important role for
improving economy and security of power system operation.
Although the reactive power generation has no production cost,
however it affects the overall generation cost by the way of the
active power loss. The RPD is a nonlinear, non-convex and
non-differentiable optimization problem. It minimizes active
power loss and improves voltage profile and voltage stability by
adjusting control variables such as generator voltages, transformer
tap settings, and reactive power output of shunt VAR compensators
in a power system while satisfying several equality and inequality
constraints.

Several classical mathematical methods [1–8] such as linear
programming, quadratic programming, gradient projection
method, interior point method, reduced gradient method and
Newton method have been applied to solve RPD problem of power
system. These methods are computationally fast but these meth-
ods optimize the objective function by linearizing it. The RPD is a
non-linear multimodal optimization problem with a mixture of
discrete and continuous variables. It has multiple local optima.
Hence, it is so hard to find the global optimum of reactive power

dispatch problem by using classical mathematical methods. For
these reasons, researchers have developed computational
intelligence-based techniques to solve the RPD problem.

In recent years, computational intelligence-based techniques,
such as evolutionary programming [9], adaptive genetic algorithm
[10], particle swarm optimization [11], hybrid stochastic search
technique [12], hybrid particle swarm optimization [13],
multiagent-based particle swarm optimization [14], bacterial for-
aging based optimization [15], differential evolution [16,21],
quantum-inspired evolutionary algorithm [17], self adaptive real
coded genetic algorithm [18], seeker optimization algorithm [19],
comprehensive learning particle swarm optimization (CLPSO)
[20], biogeography-based optimization [22], hybrid shuffled frog
leaping algorithm and Nelder–Mead simplex search [23], gravita-
tional search algorithm [24], quasi-oppositional teaching learning
based optimization [25], and opposition-based gravitational search
algorithm [26] have been applied to solve RPD problem. These
techniques have shown effectiveness in overcoming the disadvan-
tages of classical methods.

Since the mid 1990s, many techniques originated from Darwin’s
natural evolution theory have emerged. These techniques are usu-
ally termed by ‘‘evolutionary computation methods” including
evolutionary algorithms (EAs), swarm intelligence and artificial
immune system. Differential evolution (DE) [27–29], a relatively
new member in the family of evolutionary algorithms, first
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proposed over 1995–1997 by Storn and Price at Berkeley is a novel
approach to numerical optimization. It is a population-based
stochastic parallel search evolutionary algorithm which is very
simple yet powerful. The main advantages of DE are its capability
of solving optimization problems which require minimization pro-
cess with nonlinear, non-differentiable and multi-modal objective
functions.

The basic concept of opposition-based learning (OBL) [31–33]
was originally introduced by Tizhoosh. The main idea behind OBL
is for finding a better candidate solution and the simultaneous con-
sideration of an estimate and its corresponding opposite estimate
(i.e., guess and opposite guess) which is closer to the global opti-
mum. OBL was first utilized to improve learning and back propaga-
tion in neural networks by Ventresca and Tizhoosh [34], and since
then, it has been applied to many EAs, such as differential evolu-
tion [35], particle swarm optimization [36] and ant colony opti-
mization [37].

Quasi-oppositional based learning (QOBL) is implemented on
differential evolution (DE). The proposed quasi-oppositional differ-
ential evolution (QODE) along with basic differential evolution
(DE) is applied to solve the RPD problem. The RPD is a combinato-
rial optimization problem involving nonlinear functions having
multiple local optima and nonlinear and discontinuous constraints.
In order to evaluate the proposed method, the proposed QODE is
tested on IEEE 30-bus, 57-bus and 118-bus test systems with
different objective functions that reflect active power loss mini-
mization, voltage profile improvement and voltage stability
enhancement. Test results obtained from QODE have been com-
pared with those obtained by other evolutionary methods reported
in the literature. From numerical results, it is found that the pro-
posed QODE based approach provides better solution.

Problem formulation

The objective of the RPD is to minimize the active power loss
and to improve voltage profile and voltage stability while satisfy-
ing equality and inequality constraints. Three objective functions
and constraints are formulated as follows.

Objective functions

Minimization of active power loss
Minimization of active power loss in the transmission lines can

be formulated as follows

Minimize F1 ¼ Ploss ¼
XNTL
k¼1

gk V2
i þ V2

j � 2ViVj cos di � dj
� �h i

ð1Þ

where Ploss denotes active power loss of the power system, NTL is
the number of transmission lines, gk is the conductance of branch
k connected between ith bus and jth bus, Vi and Vj are the voltage
magnitudes of the ith and jth buses, di and dj are the voltage phase
angles of the ith and jth buses.

The vector of dependent variables x may be represented as

xT ¼ PG1;VL1; . . . ;VLNPQ ;QG1; . . . ;QGNG½ � ð2Þ
where PG1 denotes the slack bus power, VL is the PQ bus voltage, QG

is the reactive power output of the generator, NG is the number of
generator bus, NPQ is the number of PQ bus.

The vector of control variables u may be represented as

uT ¼ VG1; . . . ;VGNG;Qc1; . . . ;QcNC ;T1; . . . ;TNT½ � ð3Þ
where NC and NT are the number of shunt VAR compensators and
the number of tap changing transformers, VG is the terminal voltage
at the voltage controlled bus, Qc is the output of shunt VAR com-
pensator and T is the tap setting of the tap changing transformer.

Voltage profile improvement
The objective is to minimize the voltage deviation of all load

ðPQÞ buses from 1 p.u. As a result the power system operates more
securely and service quality is also improved. The objective func-
tion can be formulated as follows

Minimize F2 ¼
XNPQ
i¼1

jVi � 1:0j ð4Þ

where NPQ is the number of load buses in the power system.

Voltage stability enhancement
Voltage stability problem is the ability of a power system to

maintain acceptable voltages at all bus bars in the system under
normal operating condition. A system experiences a state of volt-
age instability when the system is being subjected to a disturbance,
increase in load demand or change in system configuration which
causes a progressive and uncontrollable decrease in voltage. Weak
system, system with long transmission lines and heavily loaded
system are much prone to voltage instability problem.

Voltage instability is a major threat for secure and reliable opera-
tion of a large scale power system. The loss of voltage stability can
manifest in the form of progressive drop of voltage magnitudes, trig-
gering unintentional load shedding and even leading to cascading
outagesor system-wideblackouts.Recently,anumberofmajorblack-
outs around theworld [39]have takenplacedue tovoltage instability.

Voltage stability can be classified into long-term and short-term
concerns depending on the time frame of interest. Analysis tech-
niques can generally fall into static method and dynamic method.
The static method is necessary for analyzing long-term voltage sta-
bility problem where as dynamic method is necessary for analyz-
ing short-term voltage stability problem. The former is based on
steady state modeling of the network i.e. via algebraic equations
and relies on power flow. The latter is based on the time domain
simulation, which models the system via differential–algebraic
equations to account for the dynamic nature of system compo-
nents in particular loads. Here, long-term voltage stability problem
has been considered.

Enhancement of voltage stability of a system is an important
parameter of power system planning and operation. Voltage stabil-
ity enhancement can be done by minimizing the voltage stability
indicator i.e. L-index value at each bus of a power system. The
L-index of a bus indicates the proximity of voltage collapse condi-
tion of that bus. L-index Lj of jth bus is defined as follows [40]

Lj ¼ 1�
XNPV
i¼1

Fji
V i

Vj

�����
����� where j ¼ 1;2; . . . ;NPQ ð5Þ

Fji ¼ �½!1��1½!2� ð6Þ
where NPV is the number of PV bus and NPQ is the number of PQ
bus. !1 and !2 are the sub-matrices of the system YBUS obtained
after segregating the PQ and PV bus bar parameters as described
in (5).

IPQ
IPV

� �
¼ !1!2

!3!4

� �
VPQ

VPV

� �
ð7Þ

L-index is calculated for all the PQ buses. Lj represents no load case
and voltage collapse case of bus j in the range of 0 and 1 respec-
tively. Hence, a global system indicator L describing the stability
of a complete system is given as follows:

L ¼ maxðLjÞ; where j ¼ 1;2; . . . ;NPQ ð8Þ
Lower value of L represents a more stable system. In the RPD

problem, inaccurate tuning of control variable settings may
increase voltage stability margin of the system [21]. In order to
improve voltage stability and to move the system far from the volt-
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