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a b s t r a c t

Genetic Algorithm with special constraint handling procedure is proposed for the discrete optimization
problem of capacitor placement and sizing in distribution system for cost reduction and power quality
improvement. We use gene encoding that enables simple integer representation of possible different
number of capacitors of various standard sizes to be placed on a bus. A pair-wise comparison in tourna-
ment selection operator is used so that it does not require any penalty parameter tuning, thus avoiding
the most difficult aspect of the selection of appropriate penalty parameters.
Proposed Penalty Free Genetic Algorithm (PFGA) is tested on 18-bus, 69-bus and 141-bus systems and

the obtained results are better than the results from other methods. Simulations with different load
models are also performed. It is shown that load models where active and reactive loads are voltage
dependent, such as residential, commercial and industrial, constant Z and constant I model lead to com-
pletely different solutions. Therefore, careful load modeling should be put in place in order to obtain more
realistic picture of the total savings.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Optimal capacitor placement has been a challenge for power
system planners and researchers for many years. The procedure
aims towards finding a minimum of certain objective function by
solving a combinatorial problem in which the location and sizes
of capacitors are to be determined. There are plenty of published
papers where different formulations of the problem along with
solution methods have been proposed. In general, the goal is to find
optimal locations and sizes of shunt capacitors such that the cost of
total real power/energy loss and that of shunt capacitors is mini-
mized. At the same time, acceptable voltage levels have to be
maintained throughout the whole network. In recent years, more
pronounced presence of harmonic sources in distribution systems
complicate the problem even more.

The problem of optimal capacitor placement has been treated in
a various different ways in the past. Approaches ranged from mas-
ter–slave problem [1], non-linear programming [2], simulated
annealing [3] and heuristic methods (immune system algorithm
[4], genetic algorithms [5,6] and particle swarm [7]). Load level
variation during the optimization procedure was introduced in

[1]. In the recent years, heuristic optimization methods for optimal
capacitor placement under distorted conditions are heavily used
[8,9,5,10].

In all of the aforementioned references, power flow calculations
are performed with loads modeled as constant active and reactive
power that are voltage independent (constant PQmodel). However,
as the system gets more loaded, the voltage dependency of the
actual loads becomes more important in the representation [11].
In the framework of power losses or voltage optimization, which
is of interest in this paper, the load voltage dependency plays an
important role, therefore the performance of the algorithm and
the results are highly dependent on the load modeling. In this
paper, we use different load models (constant PQ and constant
ZI) and investigate their influence on the voltage levels and active
power losses which are crucial parameters in the decision process
of optimal capacitor placement.

An excellent overview on the use of search oriented methods is
presented in [12], genetic algorithms (GA) included. Table 1 pre-
sents a chronological overview on the use of GA’s and the defini-
tion of fitness function.

When solving constrained optimization problems using genetic
algorithms, one can see from Table 1 that nearly always, the
penalty function methods are the usual approach mainly because
of their simplicity and ease of implementation. However, most
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difficult aspect of the penalty function approach is finding the
appropriate penalty factors needed to guide the search towards
the constrained optimum. If the penalty factors are high, the GA
will get trapped in a local optimum, while if the penalty factors
are low, the GA may not be able to detect a feasible solution. When
using weighting coefficients, one always bears the risk of over/
underestimating certain aspects in the objective function.

Selecting the proper penalty factors is highly reliant on the
problem’s nature and their fine tuning is practically based on a
case-by-case basis. The process of moving from an infeasible solu-
tion to a feasible one can be as challenging as solving the original
problem. To overcome this difficulty as suggested in [19], we use
selection operator based on pair-wise comparison in tournament
selection thus avoiding the penalty function approach, meaning
that there are no penalty parameters to tune and the fitness func-
tion is equal to the objective function. Comparisons between feasi-
ble and infeasible solutions are made in such a way as to provide a
search direction towards the feasible region (Section ‘Penalty Free
Genetic Algorithm’).

Problem formulation

Objective function

The non-linear integer problem of capacitor placement in distri-
bution system is solved with discrete values of capacitor sizes and
selection of their locations. The objective function, as in [10], com-
prise of yearly system operation costs including costs for capacitor
installation, power and energy losses and it is given with

min F ¼ F loss þ Fcap: þ Fpow:

¼ CeDW þ p
X
k2C

Cf þ CvQ c;k

� �þ CpDP
max ð1Þ

where F loss energy loss cost; Fcap: cost of capacitors; Fpow: cost corre-
sponding to power losses (e.g., used capacity of the system); Ce

electricity cost per kilowatt-hour ($/kW h); DW yearly electricity
losses (kW h); p fixed annuity payment rate expressed in relative
units; Cf fixed costs for capacitors installation ($/location); Cv

capacitors costs per unit size ($/kvar); Q c;k capacitor size at location
k (discrete values in kvar), C set of locations where capacitors are
installed; Cp saving per kilowatt for reduction in losses which is
price for peak power ($/kW) and DPmax power losses at peak power
(kW).

Since we are interested in energy losses for a given period of
time (one year), load variation has to be taken into account [1].
The assumption is that the load variation can be approximated
with discrete levels that can be different among the loads, that is,
the loads may have different pattern of variations. Let Lt be Load

Duration Curve (LDC) as shown in Fig. 1. A complex load at bus i
at time interval t can be represented as:

SiðtÞ ¼ Lt � Smax
i ð2Þ

where Smax
i is the peak value of the load. Choosing complex values

for Lt , enables for modeling of load power factor as well. If we
denote the number of intervals in the LDC as NLDC then for the total
energy loss we may write:

DW ¼
XNLDC

i¼1

DPi � Ti ð3Þ

where DPi is the active power loss in time interval i whose duration
is Ti. Note that in this paper all complex variables are underlined,
otherwise they are either real variables or magnitudes of corre-
sponding complex variables.

Constraints

We impose two sets of constraints on bus voltages for their root
mean square values (RMS) and total harmonic distortion (THD).
Constraints on RMS values are defined with the lower and upper

bounds, Vmin and Vmax respectively, as follows:

Vmin 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h
V ðhÞ

i

h i2r
6 Vmax; for i ¼ 1; . . . ;N ð4Þ

where V ðhÞ
i is the RMS value of voltage at bus i for harmonic h and N

is the number of buses in the network.
The voltage distortion constraint is considered by specifying the

maximum THD of voltages denoted with THDmax

THDi ¼ 100

V ð1Þ
i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h–1
V ðhÞ

i

h i2r

6 THDmax; for i ¼ 1; . . . ;N ð5Þ
The bounds for (4) and (5) are specified by the IEEE-519 stan-

dard [20], and they are Vmin ¼ 0:9 pu, Vmax ¼ 1:1 pu and
THDmax ¼ 5%.

One major concern arising from the use of capacitors in a power
system is the possibility of a system resonance, which imposes
voltages and currents that are considerably higher than in the case
without resonance. The reactance of a capacitor bank decreases
with frequency and the capacitor bank therefore acts as a sink
for higher harmonic currents. This effect increases the heating
and dielectric stresses which yields shortened capacitor life. The
IEEE-18 standard sets limitations on voltage, current, and reactive
power of capacitor banks. According to this standard, the following
limitations should not be exceeded: (1) 110% of rated RMS voltage
Vcap;RMS; (2) 120% of rated peak voltage V cap;max, including harmon-
ics; (3) 135% of nominal RMS current Icap;rat and (4) 135% of rated
kvar Q cap;rat.

If we assume that the capacitor rated RMS voltage is at least
equal to the bus nominal voltage, which is usually the case, then

Table 1
Chronological overview on the use of Genetic Algorithms and the definition of fitness
function.

Reference Solution method Fitness function Publication

[5] GA Penalty terms 2004
[6] Fuzzy-GA Penalty terms 2008
[10] Fuzzy-GA Penalty terms 2008
[13] PSOa-GA Penalty terms 2012
[14] GA Penalty terms 2012
[15] ICAb-GA Penalty terms 2014
[16] GA Penalty terms 2014
[17] GA Weight coefficients 2014
[18] GA Penalty terms 2015

a Particle Swarm Optimisation.
b Imperialist Competitive Algorithm.
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Fig. 1. Load duration curve.
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